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P1 Demand conditions

P1.1 Theorems of metabolic control theory for models with dilution

In growing cells, all compounds are constantly diluted. Dilution can be described by dilution fluxes vdili = κ ci
proportional to concentrations ci and growth rate κ. Formally, dilution resembles a non-enzymatic degradation.
Thus, given the dilution fluxes in a flux distribution, the concentrations are known. In models with dilution, the
Jacobian matrix contains an additional term −κ I and the control matrices read

CS = −L (M− κ I)−1 NR

CJ = I+ ĒCS (P1)

where M = NR Ē L is the usual Jacobian for independent metabolites and Mdil = M−κ I. The control matrices

with respect to independent supply fluxes are given by CS
ϕind = −LMdil−1

and CJ
ϕind = ĒCS

ϕind (see SI P3.1).

The summation and connectivity theorems in models with dilution read (proof see below)

CS K = 0

CJ K = K

CS Ē L = −L (I+ κMdil−1
)

CJ Ē L = −κ Ē LMdil−1
(P2)

These theorems cover both enzymatic and non-enzymatic reactions. With the unscaled parameter elasticity matrix
ĒP, the response matrices read

RS =
∂c

∂p
= CS ĒP and RJ =

∂c

∂p
= CJ ĒP (P3)

Moreover, if the cell growth rate κ is treated as a parameter, the corresponding response coefficient vectors read

RS
κ =

∂c

∂κ
= −CS

ϕtot c, RJ
κ =

∂v

∂κ
= −CJ

ϕtot c (P4)

where CS
ϕtot = CS

ϕindIR and CJ
ϕtot = CJ

ϕindIR. The matrix IR acts as a projector from internal metabolites to

independent internal metabolites. It is obtained from an identity matrix I (corresponding to the number of internal
metabolites) by selecting only rows that correspond to independent internal metabolites.

Proof: Summation and connectivity theorems with dilution The summation and connectivity theorems
(P2) can be derived as follows. To derive the summation theorems (P2), we right-multiply the control matrices
Eq. (P1) by K, noting that NR K = 0, and obtain

CS K = 0

CJ K = K. (P5)
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To derive the connectivity theorems, we first compute

CS Ē L− κCS
ϕind = −L (M− κI)−1NĒL+ κL (M− κI)−1

= −L (M− κI)−1M+ L (M− κI)−1κ I

= −L (M− κI)−1(M− κ I) = −L (P6)

Therefore

CS Ē L = −L+ κCS
ϕind = −L− κL (M− κ I)−1 = −L (I+ κMdil−1

) (P7)

CJ Ē L = (I+ ĒCS) Ē L = Ē L+ ĒCS Ē L = Ē L− Ē L
[

I+ κMdil−1
]

= Ē L
[

I−
[

I+ κMdil−1
]]

= −κ Ē LMdil−1
(P8)

or briefly (with Mdil = M− κ I)

(
CJ

CS

)

(K|Ē L) =

(

K −κ Ē LMdil−1

0 −L[I+ κMdil−1
]

)

. (P9)

P1.2 Demand conditions (Theorem 1)

The cost-benefit balance (3) is equivalent to the gain conditions (6) and (7). To show this, we rewrite Eq. (3)
with the help of return control coefficients gv⊤ = Cg

v as

∂h

∂u
=

∂g

∂u
= Dg

(v

u

)

gv⊤ = Dg
(v

u

)

(zv⊤CJ + zc
⊤
CS)⊤

⇔

(
CJ

CS

)⊤(
zv

zc

)

= Dg
(u

v

) ∂h

∂u
. (P10)

Next, we use the summation and connectivity theorems of metabolic control theory in the form [1]

(
CJ

CS

)

(K|Ē L) =

(
K 0
0 −L

)

(P11)

where the matrix Ē contains the unscaled reaction elasticities with respect to internal metabolites. We left-multiply
Eq. (P10) with (K|Ē L)⊤ and obtain

(
K⊤ 0
0 −L⊤

)(
zv

zc

)

=

(
K⊤

L⊤ Ē⊤

)

Dg
(u

v

) ∂h

∂u
. (P12)

These equations are the gain conditions (6) and (7). To see their equivalence to the cost-benefit balance (3), we
note that the matrix (K|Ē L) is quadratic and has full rank. The matrix is therefore invertible, and multiplying
with it is an equivalence transformation. The fact that (K|Ē L) is quadratic can be seen as follows: if the internal
stoichiometric matrix N has the size nm × nr and rank r, then K has nr − r columns, and L has r columns.
Accordingly, M = (K|ĒL) is an nr×nr matrix. To see that (K|Ē L) has full rank, we left-multiply it with

(
K

NR

)
,

which yields a matrix with full rank.

P1.3 Demand conditions with dilution

The gain conditions for models with dilution (growth rate κ, Jacobian Mdil = NR Ē L − κ I, all reactions
enzymatic) read

K⊤ zv = K⊤ Dg(y)v−1

−L⊤ zc − κ (Mdil−1
)⊤ L⊤ zc∗ = L⊤ Ē⊤ Dg(y)v−1. (P13)
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with zc∗ = Ē⊤ zv + zc

Proof The proof works as the one before. Instead of the usual summation and connectivity theorems Eq. (P11),
we use the form

(
CJ

CS

)

(K|Ē L) =

(

K −κ Ē LMdil−1

0 −L[I+ κMdil−1
]

)

. (P14)

(see P1.1). We continue as before and obtain

(

K⊤ 0

(−κ Ē LMdil−1
)⊤ (−L[I+ κMdil−1

])⊤

)(
zv

zc

)

=

(
K⊤

(Ē L)⊤

)

Dg(y)v−1, (P15)

which can be written as

K⊤ zv = K⊤Dg(y)v−1

−κ (Mdil−1
)⊤ L⊤ Ē⊤ zv − [I+ κMdil−1

]⊤ L⊤ zc = (Ē L)⊤ Dg(y)v−1. (P16)

The last equation can be rewritten as

−L⊤ zc − κMdil−1⊤

L⊤ [Ē⊤ zv + zc] = (Ē L)⊤ Dg(y)v−1. (P17)

Thus, the flux gain condition is unchanged by dilution, while the concentration gain condition contains an addi-

tional term −κMdil−1⊤

L⊤ zc∗, where zc∗ = [Ē⊤ zv + zc].

P1.4 Demand conditions involving inactive or non-enzymatic reactions

To derive gain conditions accounting for non-enzymatic reactions, we split the flux distribution v into subvec-
tors venz (active enzymatic reactions) and vnon (inactive or non-enzymatic reactions). The resulting flux and
concentration gain conditions read

k · zv − knon · gv
non = k⊤

enzDg(yenz)v
−1

enz. (P18)

−L⊤ zc − (Ē L)⊤non g
v
non = ((Ē L)enz)

⊤Dg(yenz)v
−1

enz. (P19)

where gv
non = ∆wnon + ẑvnon as usually. In the case of dilution reactions (where ki = κ ci, ∆wdil

i = −wi, ẑ
v
i = 0

and Ēdil = κ), the extra terms would read

−knon · g
v
non =

∑

i

ki g
v
i =

∑

i

κ ci(−wi) = −κ
∑

i

ciwi (P20)

−(Ē L)⊤non,i g
v
non,i = −κ − wi = κwi. (P21)

Proof The cost-benefit balance for active enzymatic reactions reads (compare Eq. P10)

hu
enz = gu

enz = Dg

(
venz

uenz

)

gv
enz ⇒ gv

enz = Dg(uenz)Dg(h
u
enz)v

−1
enz (P22)

Now let k be a test mode, i.e, a stationary mode on the active subnetwork of v. We can split the product gv · k
into

k · gv = kenz · g
v
enz + knon · gv

non. (P23)

Since gv = ∆wc + zv and ∆wc · k = 0, obtain

k · zv = kenz · g
v
enz. (P24)
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After equating the last equations and rearranging, we obtain the flux gain condition

k · zv − knon · g
v
non = k⊤

enzDg(h
u
enz)Dg(uenz)v

−1
enz. (P25)

To derive the concentration gain condition, we start from

gv⊤ Ē L = [zc⊤CS + zv
⊤
CJ] Ē L = −zc

⊤
L. (P26)

where we used the connectivity theorems. The left-hand side can be split into

gv⊤ Ē L = gv
enz

⊤ (Ē L)enz + gv
non

⊤ (Ē L)non. (P27)

By equating the equations, we obtain

−zc
⊤
L = gv

enz
⊤ (Ē L)enz + gv

non
⊤ (Ē L)non. (P28)

By inserting Eq. (P22) and taking the tranpose, we obtain the concentration gain condition

−L⊤ zc = ((Ē L)enz)
⊤Dg(hu

enz)Dg(uenz)v
−1
enz + (Ē L)⊤non g

v
non. (P29)

P1.5 Total cost and benefit for homogeneous objective and investment functions

If the enzyme investment h(u is a homogeneous function (satifying h(λu) = λγ h(u) with real exponent γ), we
can use Euler’s theorem:

∑

l
∂h

∂ lnul
= γ h. For cost functions, we may use exponents 1 ≤ γu < 2. In particular,

for a linear cost function (where γ = 1), we obtain h =
∑

l
∂h

∂ lnul
=
∑

l yl. In analogy, we can use homogeneous

flux cost functions H̄(v) = (
∑

l H̄
v
l |vl|)

α or flux objective functions z(v) = (
∑

l z
∗
l vl)

β . These sum formulae
can be used to state balances between total cost and benefit. With such choices, from zv · v = y · u, the total
cost-benefit balance reads γz z = γu h.

P2 Economical flux distributions

P2.1 Test mode theorem (Theorem 2)

Let v be a complete flux distribution and k be a non-vanishing, non-beneficial test mode (satisfying zv⊤ k = 0).
To be economical, v must satisfy the flux gain condition Eq. (6) with a positive enzyme cost vector y satisfying

k⊤Dg(y)v−1 = 0. (P30)

All elements of y are positive, none of the elements vl is zero, and at least some of the fluxes kl are non-zero,,
Therefore, Eq. (P30) can only hold if kl vl > 0 for some index l, and kj vj < 0 for some other index j.

P2.2 Non-beneficial modes and the existence of economic potentials

For use in Theorem 3, we need the following lemma:

Lemma. (a) If a complete flux distribution v satisfies the reaction balance (11) with positive enzyme costs yl,
it is free of non-beneficial modes. (b) If a complete flux distribution v is free of non-beneficial modes, it satisfies
the reaction balance Eq. (11) with positive enzyme costs yl.

For the proof, we recall Gordan’s theorem [2]: Let A be a real m×n matrix and 1 = (1, 1, ..., 1)⊤ ∈ R
m. Gordan’s

theorem states that either the inequality system Ax > 0 has a solution x ∈ R
n or the system A⊤ y = 0,y ≥ 0,

1⊤y > 0 has a solution y ∈ R
m, but never both.

Proof direction (a): If v satisfies the reaction balance with gain vector zv and positive enzyme costs yl,
v is free of non-beneficial modes. We consider a complete flux distribution v and define the reaction directions
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such that all fluxes vl are positive. If v contains a non-beneficial mode, there is a non-beneficial test mode k

that shares with v all flux directions on their overlap, so
(
z
v⊤

N

)
k = 0, k ≥ 0, and 1⊤k > 0. On the contrary, if v

satisfies the reaction balance

∆wc
l + zvl = ql/vl > 0,

the inequality
( (zv|

N⊤) ( 1

w
c)>0

)
has a solution

(
1
wc

)
. According to Gordan’s theorem, only one of the two statements

can hold, so if the reaction balance holds, no non-beneficial modes can exist.

Proof direction (b): If v is free of non-beneficial modes with respect to zv, it satisfies a reaction balance
with flux gain vector zv and positive enzyme costs. If v is free of non-beneficial modes, the inequality system
(
z
v⊤

N

)
k = 0,k ≥ 0,1⊤k > 0 has no solution k. Thus, according to Gordan’s theorem, there must be a solution

to the inequality system
(
z
v⊤

N

)⊤
x > 0. Without loss of generality, we can assume that the first element of x is

-1, 0, or 1, and can identify the rest of the vector with wc. Therefore, one of the following inequalities must have
a solution (for all l):

∆wc
l + zvl > 0

∆wc
l > 0

∆wc
l − zvl > 0.

If we multiply with the fluxes vl and sum over all reactions, the term
∑

l vl∆wc
l drops out and we obtain,

respectively, three alternative inequalities

zv
⊤
v > 0

0 > 0

−zv
⊤
v > 0.

Since v is beneficial by assumption (zv · v > 0), the first inequality must hold. Therefore ∆wc
l + zvl > 0 must

hold, and consistent enzyme costs are given by yl = [∆wc
l + zvl ] vl.

P2.3 Criteria for economical flux distributions (Theorem 3)

Proposition For complete flux distributions v (with zv · v > 0), the following statements imply each other: (i)
v is economical; (ii) v satisfies the reaction balance Eq. (11) for some choice of internal economic potentials wc

i

and positive enzyme costs yl; (iii) v is free of non-beneficial modes.

Proof: To prove that the conditions are equivalent, we show that each of them implies the next one in a circle:
(a) a complete, beneficial flux distribution that is free of futile modes; (b) a complete flux distribution that is
beneficial and free of non-beneficial modes solves the reaction balance; (c) a complete flux distribution that solves
the reaction balance is economical.

(a) Economical modes are free of futile modes. The absence of futile modes follows directly from the test
mode theorem and from the definition of futile modes.

(b) Complete flux distributions that are free of non-beneficial modes solve the reaction balance This has
been shown in the previous section P2.2.

(c) The reaction balance implies the flux gain condition. We start from the reaction balance in the form
[∆wc

l + zvl ] = yl/vl, multiply from the left by a test mode k⊤, and obtain

⇒ k⊤ [N⊤wc + zv] = k⊤ Dg(v)−1 y

⇒ k⊤ zv = k⊤ Dg(y)v−1 (P31)

because k⊤ N = 0. If this holds for any stationary flux mode k, it also holds for the entire kernel matrix K.
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P2.4 Flux cost minimisation and economic flux modes (Theorem 4)

Proposition Let v be the solution of a non-flux-enforcing flux cost minimisation problem

min
!
= H̄(v′) such that zv · v′ = b, Nv′ = 0 (P32)

Then v is economical and satisfies the balance equation

[zvl +∆wc
l ] vl = yl.

for all active reactions (where vl 6= 0), with positive values yl and with wc
l being proportional to the Lagrange

multipliers with respect to the stationarity condition. It also holds that
∑

l z
v
l vl =

∑

l yl = b.

Proof: The weighted flux minimisation is convex and has therefore at least one solution, which satisfies

0 =
∂H̄

∂vl
− α zvl −

∑

i

βi nil (P33)

with Lagrange multipliers α (for the benefit constraint) and βi (for the stationarity constraints). For all reactions

l with non-zero fluxes vl, the derivative
∂H̄
∂vl

must be positive. Now we take the scalar product between Eq. (P37)
and v and we obtain:

0 =
∑

l

(

∂H̄

∂v′l
vl − α zvl vl −

∑

i

βi nil vl

)

=
∑

l

(
∂H̄

∂v′l
vl − α zvl vl

)

. (P34)

The term with nil vanishes. Thus, we see that

∑

l

∂H̄

∂v′l
vl =

∑

l

α zvl vl = α b. (P35)

We set yl =
1
α

∂H̄
∂v′

l

vl and obtain

∑

l

yl =
∑

l

zvl vl = b. (P36)

Inserting this into (P37) again, we obtain

yl = zvl vl +
∑

i

βi nil

α
vl (P37)

which is equivalent to the reaction balance we want to show.

Alternative proof: solutions of FCM problems are free of non-beneficial modes As an alternative proof,
we show that a complete flux distribution solving Eq. (P38) is free of non-beneficial modes. The proof consists
of three parts:

1. If v has a non-beneficial mode (defined by the test mode k), a linear combination v− εk (for small ε > 0)
violates the FBA inequality constraints. Proof: Since N⊤k = 0 and zv⊤k = 0, v − εk is stationary and
has the same FBA benefit as v itself. In addition, it satisfies |v − εk|1 < |v|1 (for a non-weighted flux
minimisation problem) or hv(v−εk) < hv(v) (for any FCM problem, where hv(·) is the flux cost function).
Therefore, v cannot solve the FCM problem unless v − εk violates the inequality constraints.

2. If v − εk violates the inequality constraints for arbitrarily small ε > 0, the inequality constraints must
contain some bounds vmin

l > 0 or vmax
l < 0.

Proof: Assume that v − εk (for any small ε > 0) violates the lower flux bound for the lth reaction
(vl − εkl < vmin

l ). Since v does not, this must be an active constraint, i.e. vl = vmin
l , and vmin

l and kl
share the same signs. Since subtracting εkl decreases the flux, this sign must be positive, so vmin

l > 0. A
similar argument holds for vmax

l < 0.
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3. Given that vmin
l ≤ 0 and vmin

l ≥ 0 by assumption, the solution v of our FCM problem cannot contain any
non-beneficial modes. This argument can be extended to incomplete flux distributions: if an incomplete
flux distribution v solves a non-flux-enforcing FCM problem, the subvector of active fluxes vact will solve a
corresponding FCM problem on the active region. Therefore, the active flux distribution, and also v itself,
must be free of non-beneficial modes.

Proposition: Let v be a complete economical flux distribution solving the reaction balance

[zvl +∆wc
l ] vl = yl.

Then, v is a solution of a weighted flux minimisation problem

min
!
= H̄(v′) such that zv · v′ = b, Nv′ = 0 (P38)

where H̄(v′) =
∑

l
yl

vl
|v′l|. Moreover, the Lagrange multipliers with respect to the stationarity condition are given

by the economic potentials wc
l (except for a possiible regauging of conserved moieties), and it must hold that

b =
∑

l z
v
l vl =

∑

l yl.

Proof: Since the FCM problem is convex, any flux distribution that satisfies the constraints as well as the optimality
condition (P37) must be an optimum. Thus, we need to find suitable values of the Lagrange multipliers α and
βi such that Eq. (P37) is satisfied for all reactions with vl 6= 0. To do this, we set α = 1 and βi = wc

i . With this
choice, the optimality condition now reads

0
!
= yl/vl − zvl −

∑

i

βi nil (P39)

This is equivalent to the assumed balance equation and must therefore hold true.

P3 Economic potentials

P3.1 Economic potentials and flux demand (reaction rule Eq. (8))

Control coefficients with respect to supply fluxes The effect of small supply fluxes ϕind
m on the steady

state concentrations ci = Si(u,x,ϕ
ind) and fluxes vl = Jl(u,x,ϕ

ind) is described by control matrices CS
ϕind =

∂c/∂ϕind and CJ
ϕind = ∂v/∂ϕind, which are computed as follows. Consider a network with nint internal

metabolites. If there exist conserved moieties, we select a number of independent metabolites and split the
stoichiometric matrix, into a product N = LNR with an nint × nind link matrix L and a reduced stoichiometric
matrix NR, whose rows correspond to independent metabolites. We can write NR = IRN, where the matrix IR
is obtained from an nint × nint identity matrix by selecting the rows corresponding to independent metabolites;
in addition, we obtain IR L = I. The stationarity condition for independent metabolites in the presence of supply
fluxes ϕind reads

0 = NRv +ϕ
ind (P40)

and the derivative with respect to ϕ
ind yields

0 = NR
∂v

∂c

∂S

∂ϕind
+ I = NR Ē LC

S,ind
ϕind + I (P41)

where v(c) describes the rate laws, S(ϕind) describes how the independent metabolite concentrations in steady

state depend on the supply fluxes, and the control matrix C
S,ind
ϕind contains the corresponding derivatives. The

matrix product M = NR Ē L is the Jacobian matrix for the independent internal metabolites. Solving Eq. (P41)

for CS,ind
ϕind , we obtain

C
S,ind
ϕind = −M−1 (P42)
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and from this

CS
ϕind = LC

S,ind
ϕind = −LM−1

CJ
ϕind = ĒCS

ϕind = −Ē LM−1. (P43)

For convenience, we define the matrices

CS
ϕtot = CS

ϕind IR

CJ
ϕtot = CS

ϕind IR. (P44)

A comparison to the unscaled control matrices [3]

CS = −LM−1NR

CJ = I− Ē LM−1NR, (P45)

shows that these can be written in terms of CS
ϕtot as

CS = CS
ϕtot N

CJ = I+CJ
ϕtot N. (P46)

Economic potentials Now we consider the internal economic potentialswc = I⊤R ∂g/∂ϕind and the flux demand
gv = zv⊤CJ + zc⊤CS. With the chain rule and Eq. (P46), we can write them as

wc = I⊤R
∂g

∂ϕind
= [zv⊤CJ

ϕind IR + zc
⊤
CS

ϕind IR]
⊤ = [zv⊤CJ

ϕtot + zc
⊤
CS

ϕtot ]⊤

⇒ ∆wc = N⊤wc = [zv⊤CJ
ϕtot N+ zc

⊤
CS

ϕtot N]⊤

= [zv⊤(CJ − I) + zc
⊤
CS]⊤ = gv − zv. (P47)

We therefore obtain

gv = ∆wc + zv = ∆wc +∆wx + ẑv = ∆w + ẑv. (P48)

By inserting Eq. (P44) into Eq. (P47), we obtain the explicit formula

wc = −
[

[zv⊤Ē+ zc
⊤]LM−1IR

]⊤

=
[

[zv⊤Ē+ zc
⊤]CS

ϕtot

]⊤

= zc∗
⊤
CS

ϕtot . (P49)

These formulae also hold in the presence of non-enzymatic reactions and dilution. Given a kinetic steady-state
model and a metabolic objective z(v, c), the economic potentials and their balances within reactions read

wc⊤ = −(zv⊤Ē+ zc
⊤)L(NRĒ L)−1 IR

∆w⊤ = zv
⊤
CJ − zv

⊤ + zc
⊤
CS. (P50)

P3.2 Enzyme adaption can be neglected in the definition of economic potentials and
loads

Economic potentials describe how small supply fluxes would affect the steady-state benefit. In the definition, the
enzyme levels are kept fixed. If they were adapted to the supply fluxes, this could increase the benefit. With such
an adaption, we would obtain an alternative definition of “adaptive” economic potentials. However, since the
additional fitness benefit is a second-order effect, adaptive and non-adaptive economic potentials are identical.
This is shown now. The steady-state fluxes vl and the internal concentrations cm form a state variable vector

s =
(
c

v

)⊤
. We assume that this vector is a differentiable function s(u,x,ϕind) of the enzyme vector u, the

8



external concentration vector x, and the supply flux vector ϕind for independent metabolites. We now consider
a fitness function

f(u,x,ϕind) = g(s(u,x,ϕind))− h(u). (P51)

Given external concentrations xj and virtual supply fluxes ϕind for independent metabolites, an optimal enzyme
profile is defined as

uopt(x,ϕind) = argmaxu f(u, s(u,x,ϕ
ind)) (P52)

and the optimal fitness gopt(x,ϕind) is defined as the fitness at optimal enzyme levels,

gopt(x,ϕind) = f(uopt(x,ϕind),x,ϕind))

= z(s(uopt(x,ϕind)),x,ϕind, )− h(uopt(x,ϕind)). (P53)

We now consider a state without supply fluxes (ϕind = 0). The usual, non-adaptive external economic loads and
internal economic potentials in this state are defined by

pxj =
∂g

∂xj
|ϕind=0, wind

m =
∂g

∂ϕind
m

|ϕind=0, (P54)

at constant enzyme levels uopt. The adaptive quantities, in contrast, are defined by

pxj
adaptive =

∂gopt

∂xj
|ϕind=0, wind

m

adaptive
=

∂gopt

∂ϕind
m

|ϕind=0. (P55)

Despite the different definitions, their values are identical because enzyme adaption is a second-order effect and
does not affect the first derivatives (Proof in section P3.2).

Adaptive and non-adaptive economic potentials Adaptive and non-adaptive economic potentials are defined
differently, but their values are identical. The proof is as follows. The non-adaptive economic potentials for internal
metabolites read

wind =
∂g

∂ϕind
=

∂z

∂s

∂s

∂ϕind
(P56)

where the state vector s(u,x,Lϕ
ind) =

(
J(u,x,Lϕ

ind)
S(u,x,Lϕind)

)
, z(s) is the metabolic objective function, and g(u,x,ϕind) =

z(s(u,x,Lϕ
ind)) is the metabolic return function. For the adaptive economic potentials, we define the adapted

enzyme levels uopt and the adaptive benefit function

uopt(x,ϕind) = argmaxu
[
g(u,x,ϕind)− h(u)

]

gopt(x,ϕind) = g(uopt(x,ϕtot),x,ϕind). (P57)

The adaptive economic potentials for internal metabolites read:

wind,opt =
∂gopt

∂ϕind
=

∂z

∂s

[
∂s

∂ϕind
+

∂s

∂u

∂uopt

∂ϕind

]

=
∂z

∂s

∂s

∂ϕind
+

[
∂z

∂s

∂s

∂u

]
∂uopt

∂ϕind
. (P58)

The term in brackets is ∂g/∂u, the total derivative of the return with respect to the enzyme levels. If the
metabolic state is completely enzyme-balanced (i.e. all reactions are active and satisfy the cost-benefit balance),
this term vanishes and Eq. (P58) yields the same result as Eq. (P56). A similar argument holds for the external
economic loads: if we differentiate gopt by x instead of ϕind, we obtain

px,opt =
∂gopt

∂x
=

∂z

∂s

[
∂s

∂x
+

∂s

∂u

∂uopt

∂x

]

=
∂z

∂s

∂s

∂x
+

[
∂z

∂s

∂s

∂u

]
∂uopt

∂x
=

∂z

∂s

∂s

∂x
= px. (P59)

To summarise: the first-order adaptive and non-adaptive economic potentials are identical, and the same holds for
the economic loads. Since we use only first-order quantities, the distinction between adaptive and non-adaptive
quantities does not play a role.
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P4 Economic loads and compound balance

P4.1 The economic load

The total demand gci of an internal metabolite (i.e., the marginal effect gci =
∂g
∂γi

of a virtual concentration change

δγi on the metabolic return g) is the sum

gci = zci +
∑

l

Cg
l Ē

vl

ci (P60)

of a direct concentration gain zci and an indirect concentration demand, which I call the economic load pci . The
load is an effective concentration gain induced by the system, i.e., the fact that the metabolite’s concentration
has an influence on the metabolic return via changes of the steady state. The vector of internal loads reads

pc = [Cg Ē]⊤ = [zv⊤ CJ Ē+ zc
⊤
CS Ē]⊤ (P61)

By summing the economic loads over conserved moieties and applying the connectivity theorem we obtain the
simple equality

L⊤ pc = [[zv⊤ CJ + zc
⊤
CS] Ē L]⊤ = −L⊤ zc. (P62)

where we used the connectivity theorems of metabolic control analysis.

P4.2 Compound law Eq. (19)

Demonstration by thought experiment The compound rule Eq. (19) between economic loads and potentials
can be shown by a thought experiment. Consider a compensated local variation, consisting of the metabolite vari-
ation dc and compensating enzyme variations dul in all reactions directly affected by dc. For exact compensation,
the enzyme levels must satisfy

0 = dvl = Ēvl

ci dci +
vl
ul

dul ⇒ dul = −
ul

vl
Ēvl

ci dci. (P63)

The concentration change, by itself, would yield a direct fitness change zci dci (by changing the metabolite level
directly) and an indirect fitness change pci dci (by affecting the rest of the system, which includes compensating
effects on the metabolite level in question). The enzyme variations would cause direct fitness changes −hu

l dul

and indirect fitness changes gvl
vl
ul

dul. Therefore, the total fitness change reads

df = zci dci + pci dci − hu
l dul + gvl

vl
ul

dul. (P64)

Since the compensated variation causes no change in the surrounding network, the fitness change can also be
written as a sum of direct effects

df = zci dci −
∑

l

hu
l dul. (P65)

A comparison between Eqs (P64) and (P65) shows that the indirect effects must cancel out:

pci dci = −
∑

l

gvl
vl
ul

dul (P66)

This holds for any compensated local variation: the indirect fitness changes cause by the different local variations
must add up to zero. By inserting dul from Eq. (P63), we obtain the compound rule

pci dci =
∑

l

gvl Ē
vl

ci dci ⇒ pci =
∑

l

gvl Ē
vl

ci . (P67)

In fact, our thought experiment would also work with non-enzymatic reactions (in this case, we could consider
virtual changes of rate constants). Therefore, the result holds generally for networks with non-enzymatic reactions
or non-specific enzymes.
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Direct proof of compound rule Eq. (19) The internal loads on the left, written as a row vector, read

pc⊤ = [zv⊤CJ + zc
⊤
CS] Ē. (P68)

The right-hand side reads

gv⊤ Ē = [ẑv +∆w]⊤ Ē = [zv +N⊤wc]⊤ Ē = zv
⊤
Ē+wc⊤ NĒ (P69)

We insert

wc = zv
⊤
CJ

ϕind + zc
⊤
CS

ϕind = [zv⊤ Ē+ zc
⊤]CS

ϕind (P70)

and obtain

gv⊤ Ē = zv
⊤
Ē+ [zv⊤Ē + zc

⊤]CS
ϕindNĒ = [zv⊤[I+ ĒCS] + zc

⊤
CS] Ē

= [zv⊤CJ + zc
⊤
CS] Ē, (P71)

the same result as for the left-hand side.

P4.3 Economic potentials obtained from compound rule Eq. (10)

To derive Eq. (10), we first write the compound rule as pc = Ē⊤ [zv + ∆wc] (splitting the flux demand into
total flux gain zv and the internal economic potential balance wc). In models without moiety conservation, we
can replace pc = −zc and obtain −zc = Ē⊤ zv + Ē⊤ N⊤ wc and thus

wc = −((NĒ)⊤)−1 [Ē⊤ zv + zc] = −(M⊤)−1zc∗.

In models with moiety conservation, we left-multiply the compound rule by L⊤ and obtain L⊤ pc = L⊤ Ē⊤[zv +
N⊤

R L⊤ wc]. We can now replace L⊤ pc = −L⊤ zc and obtain −L⊤ zc = L⊤ Ē⊤ zv + L⊤ Ē⊤ N⊤
R L⊤ wc.

Rearranging yields 0 = L⊤ [zc + Ē⊤ zv] + (NR Ē L)⊤ L⊤ wc and thus L⊤ wc = −((NR Ē L)⊤)−1L⊤ [Ē⊤ zv +
zc]. With the standard defintion of economic potentials (where dependent metabolites have vanishing economic
potentials), we finally obtain

wc = −I⊤R ((NR Ē L)⊤)−1L⊤ [Ē⊤ zv + zc] = −I⊤R (M⊤)−1L⊤ zc∗.

P5 Balance equations

P5.1 Reaction balance (Theorem 6)

To derive the reaction balance Eq. (11), we start from the cost-benefit balance gvl vl = hu
l ul and insert Eq. (??)

for the flux demands. Above, we defined the economic potentials as the demand with respect to supply fluxes
and showed that they satisfy the reaction balance. Instead, we can also derive the reaction balance directly and
interpret the quantities wi appearing in the equation as potentials. From the cost-benefit balance (3), we obtain

∂h

∂u
=

∂g

∂u
= Cg Dg(Ēu) = [zv⊤CJ + zc

⊤
CS]Dg(v/u)

= [zv⊤(I− Ē LM−1NR)− zc
⊤
LM−1NR]Dg(v/u)

= [zv⊤ − (zv⊤Ē+ zc)LM−1IR
︸ ︷︷ ︸

ŵc⊤

N]Dg(v/u)

= [zv⊤ + ŵc⊤ N]Dg(v/u). (P72)

The vector ŵc is exactly the vector of economic potentials defined in Eq. (P49). This trick – rewriting the control
coefficients in terms of local balances – works not only for our metabolic objective z(v, c), but for any differentiable
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function a(v, c) of the state variables – including likelihood functions, relating a model to experimental data. In
general, we can write its control coefficients as

Ca
v = (a⊤c C

S + a⊤v C
J) = av + (a⊤c + a⊤v Ē)C

S = av + (a⊤c + a⊤v Ē)(−L)(NĒL)−1NR

= av +α
⊤ NR (P73)

with the abbreviations avl = ∂a/∂vl (direct flux effect on a) and α := (ac + avĒ)(−L)(NĒL)−1 (potential of
internal metabolites representing the indirect flux effects on a).

P5.2 Compound balance (Theorem 6)

To prove the compound balance Eq. (14), we think of a metabolite that participates in enzymatic reactions only.

External metabolites. The economic load pxj of an external metabolite is defined as pxj = ∂g/∂xj, where g(u,x)
is the metabolic return in steady state. The load can be written as

pxj =
∑

l

gvl Ē
vl

xj
(P74)

with unscaled elasticities Ēvl
xj
. According to the cost-benefit balance (3), the flux demand gvl must be balanced

with the flux price hu
l ul/vl. By inserting this into Eq. (P74) and multiplying with the external metabolite level

xj , we obtain

xj p
x
j =

∑

l

hu
l ul

xj

vl
Ēvl

xj
=
∑

l

hu
l ulE

vl
xj

(P75)

with scaled elasticities Evl
xj
.

External parameters For other parameters pn affecting the rates, we can define economic loads qpn
= ∂g/∂pn

and obtain an analogous formula

pn qpn
=

∑

l

hu
l ul

pn
vl

Ēvl

pn
. =

∑

hu
l ul E

vl

pn
. (P76)

P5.3 Compound balance with non-enzymatic reactions

External metabolite Compound balances can comprise non-enzymatic reactions. We first consider the equation
for an external metabolite. If we sum separately over enzymatic and non-enzymatic reactions, Eq. (P75) becomes

xj p
x
j =

∑

l∈enz

hu
l ulE

vl

xj
+
∑

l∈non

gvl E
vl

xj
vl. (P77)

With the definitions of flux benefits bvl = gvl vl and enzyme costs yl = hu
l ul, this reads

xj p
x
j =

∑

l∈enz

yl E
vl

xj
+
∑

l∈non

bvl g
v
l E

vl

xj
. (P78)

Internal metabolite For internal metabolites, we split the compound rule into

pci =
∑

l∈enz,i

hv
l Ē

vl

ci +
∑

l∈non

gvl Ē
vl

ci , (P79)

and the final compound balance with non-enzymatic reactions reads

pci
∗ ci =

∑

l∈enz,i

yl E
vl

ci +
∑

l∈non

bvl E
vl

ci . (P80)

Compound balance with dilution fluxes Dilution in growing cells can be described by virtual dilution reactions
with rates vdili = κ ci. The economic potential differences for these reactions ∆wc

i = −wc
i , and with the unscaled

elasticities read Ēdil
ii = dvdili /dci = κ, we obtain an additional term −wc

i κ ci on the right. If we bring it to the
left, we obtain the effective load pci + wc

m κ ci.
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P6 Reconstruction of enzyme-optimal metabolic models

P6.1 Reconstruction algorithm

A flux distribution is called enzyme-optimal if it appears in a kinetic model in a stable steady state with optimal
enzyme levels. Thus, the model must enzyme-balanced and economically stable. To prove that a flux distribution
is enzyme-optimal, we need to construct such a model. To do so, one can first determine a flux distribution, then
all other steady-state variables, and finally the rate constants. Some model quantities can be predefined (e.g.,
based on experimental data) in agreement with the relevant constraints. As rate laws, we choose the simultaneous
binding modular rate law [4]. By construction, the model is thermodynamically correct and satisfies the reaction
balance and the compound balance. The construction consists of two phases.

Steady-state phase In the steady-state phase, we determine a thermodynamically and economically feasible
steady state:

1. Feasible stationary flux distribution (xj, cm, vl) Fluxes and concentrations are determined by economic
flux analysis. The economic balance equation is used as a condition aside from stationarity and thermo-
dynamic constraints. We first compute consistent fluxes; concentrations; equilibrium constants; from the
latter, the chemical potentials and thermodynamic driving forces; and finally economic potentials and en-
zyme costs. These quantities must satisfy the thermodynamic sign constraints and the reaction balance
(with predefined gains zv).

2. Concentrations c and equilibrium constants keq together determine the thermodynamic driving forces

(vector Θ = −∆G/RT = lnkeq −Ntot⊤ log c). The equilibrium constants must satisfy the Wegscheider
conditions (N⊤ lnkeq = 0), and thermodynamic forces and fluxes must share the same directions (vl 6=
0 ⇒ sign(Θl) = sign(vl)). The reaction affinities Θl are bounded to avoid extreme kinetic properties later
in the algorithm.

3. Reaction balance: compute or refine economic potentials and enzyme costs If the flux distribution
v is incomplete, we restrict our model to the active region. The inactive reactions can always be justified
by large enzyme prices or low catalytic constants. In the rest of the algorithm, the flux distribution v can
be assumed to be complete.

Kinetic phase In the kinetic phase of the algorithm, we construct kinetic rate laws in agreement with the
predefined steady state. We use the simultaneous binding modular rate law [4] with complete allosteric activation
or inhibition. The aim is to find rate constants such that the resulting elasticities satisfy the compound balance.
In practice, we predefine economic loads, solve the compound balance for the reaction elasticities, and then solve
for the rate constants. To ensure that our elasticities are consistent with the fluxes and thermodynamical laws,
we express them by saturation values [4], which are thermodynamically independent. In detail, the kinetic phase
of the algorithm looks as follows:

1. Linear dependencies for saturation values To satisfy the compound balance, we need to determine
saturation levels βM

li , β
A
li , β

I
li and consistent values of the economic loads. For the rate laws chosen (

simultaneous binding modular rate laws with complete allosteric regulation), the scaled elasticities can be
written as

Evl

ci =
ζlm

+
li −m−

li

ζl − 1
︸ ︷︷ ︸

EΘ
li

−βM
li

(
m+

li +m−
li

)
+ αA

li m
A
li − βI

li m
I
li (P81)

where ζl = e−hl ∆µl/RT andm+
li andm−

li are the molecularities for substrates and products. The coefficients
mA

li and mI
li indicate allosteric regulation. The saturation values βM

li , β
A
li , and βI

li describe the binding of
reactants, allosteric activators, and allosteric inhibitors to the enzyme. Formula (P81) stems from Eqs (33),
(34), (35), and (37) in [4]. From the compound balance, we obtain conditions for the saturation values.
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For external metabolites with index j, we obtain

∑

l

yl E
Θ
lj = pxj xj +

∑

l

(yl mlj)β
M
lj −

∑

l

(yl m
A
lj)α

A
l +

∑

l

(yl m
I
lj)β

I
lj (P82)

and for independent internal metabolites (with index i)

∑

l

yl E
Θ
li = pc c+

∑

l

(yl mli)β
M
li − (yl m

A
li)α

A
li + (yl m

I
li)β

I
li. (P83)

For details, see P6.2.

2. Linear constraints for saturation values With their left-hand sides being predetermined by earlier steps
of the algorithm, Eqs (P82) and (P83) can be used as linear constraints for the saturation values. In
addition, we set lower and upper bounds (e.g., restrict saturation values to the range [0.05, 9.95] to avoid
full saturation); metabolite loads can be predefined, but it may not be possible to realise them precisely (in
which case they are approximated). Thus, we obtain a set of linear inequalities for the saturation values and
for the metabolite loads: to obtain specific solutions, we can sample parameter sets under these constraints,
or we choose an optimal parameter set within the feasible region. In practice, we first search for a solution
using a predefined concentration gain vector zc. If no solution exists, we repeat the search, but allow for
changes of zc, which we also minimise.

3. Solving for the rate constants Before we determine the rate constants, we choose enzyme levels ul in
a physiologically sensible range (based on proteome data or proportional to the enzyme costs yl). Then
we compute the KM values and activation and inhibition constants from the saturation values and the
metabolite level. For each enzyme, there remains one unknown parameter kVl , the geometric mean of
forward and reverse catalytic constants. It needs to be chosen such that the reaction rates rl(c,u) from the
rate laws match the predefined fluxes vl. Given all other kinetic constants, equilibrium constants, metabolite
concentrations, enzyme levels, and fluxes vl, we can directly solve for the the constants kVl .

The resulting model has an enzyme-balanced steady state. If it is dynamically and economically stable (which can
be tested by inspecting the Jacobian and the fitness curvature matrix), the flux distribution is enzyme-optimal.
We can use this test as a filter for sampled models: if the Jacobian or the fitness curvature matrix has a positive
eigenvalue, the sampled model is discarded. .

P6.2 Solving the compound balance equations for reaction elasticities

In the construction of enzyme-balanced kinetic models, there is a point where fluxes vl, concentrations ci, and
chemical potential differences ∆µl have been fixed, the model has been restricted to active reactions, and enzyme
costs yl and economic potentialswi have been determined in accordance with the reaction balance. Now elasticities
and economic loads need to be chosen in agreement with the load balance equation. The simultaneous binding
modular rate laws [4] (which are used in the model) are saturable and their scaled elasticities can be written in
terms of saturation values, which we treat here as free variables. The compound balance defines linear constraints
for the saturation values; we can then determine them by quadratic programming (to find the maximum of some
Gaussian probability distribution) or by uniform sampling. These are the relevant constraints:

1. Compound balance for scaled elasticities Ēvl
xj and economic loads, for external metabolites

pxj xj =
∑

li

yl E
vl

xj
(P84)

and for internal metabolites

pci ci =
∑

l

yl E
vl

ci . (P85)

Given the values of xj , ci, and yl, these equations can be used as linear constraints for pci and Evl
ci .
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2. The internal economic loads pci satisfy the equality Lpc = −Lzc. For external metabolites, we can assume
that metabolites being consumed have positive loads and metabolites being produced have negative loads.
This yields the sign constraints (for all external loads pxj )

sign

(
∑

l

njl vl

)

= −sign(pxj ). (P86)

These sign constraints are not mandatory, but only rules of thumb. For the case that uptake and production
fluxes of a metabolite cancel out, the sign of pxj remains unconstrained.

3. In the modular rate laws, the saturation values βM
li , β

A
li , and βI

li, describe the binding of reactants, allosteric
activators, and allosteric inhibitors in a metabolic state in question. For convenience, we define αA

li = 1−βA
li .

The scaled elasticities of the simultaneous binding modular rate law with complete allosteric regulation [4]
can be written in terms of the saturation values as

Evl
ci = EΘ

li − βM
li

(
m+

li +m−
li

)
+ αA

li m
A
li − βI

li m
I
li (P87)

where EΘ
li =

ζlm
+

li
−m−

li

ζl−1 , ζl = e−hl ∆µl/RT , and m+
li and m−

li are the molecularities of substrates and

products. The coefficients mA
li and mI

li indicate allosteric regulation. Formula (P81) stems from Eqs (33),
(34), (35), and (37) in [4]. With predefined values ζl, m±

li , and w±
li , the elasticity Evl

ci depends linearly on
the saturation values.

4. All saturation values are constrained by 0 ≤ βli ≤ 1 or tighter constraints (e.g., between 0.05 and 0.95).
Of course, only relevant saturation values (corresponding to non-zero values of m+

li , m
−
li , m

A
li , or m

I
li) need

to be considered.

P6.3 Example: enzyme and ribosome production in growing cells

Let us now consider the simple example of a growing cell in Figure 7, with a choice of elasticities that allows
for a solution. To effectively model growth maximisation at a constrained biomass concentration, we assume a
positive concentration demand for biomass (but not for the other compounds). Feasible economic potentials can
be computed from the compound rules, which entail the flux demands gvl . In the general case, the reaction rule
(P92) and the compound rule (P91) become

gv = N⊤wc +Nx⊤wx + ẑv

zc = Ē⊤gv − κwc. (P88)

This yields

0 = zc + Ē⊤[N⊤wc +Nx⊤wx + ẑv]− κwc

⇒ wc = −((NĒ− κ I)⊤)−1[zc + Ē⊤ [Nx⊤wx + ẑv]]

= −((NĒ− κ I)⊤)−1[zc + Ē⊤ zv]. (P89)

The matrix in brackets is the Jacobian, and if the system is dynamically stable, it is invertible. This means that,
given the external economic potentials and the growth rate κ, we can solve for the internal economic potentials.

Now let us apply this to our example. We use subscripts for compounds (energy p, intermediate i, enzyme e,
ribosome r, and biomass b) and reactions (catabolism C, anabolism A, enzyme production E, ribosome production
R). Assuming that all stoichiometric coefficients are 1, and that there are no direct flux gains, the flux demands
are given by the reaction rules

gvC = wc
e + wc

i − wc
glucose

gvA = wc
b − wc

e − wc
i

gvE = wc
e − wc

p − wc
i

gvR = wc
r − wc

p − wc
i (P90)
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or, in matrix form,







gvC
gvA
gvE
gvR







=







1 1 0 0 0
−1 −1 0 0 1
−1 −1 1 0 0
−1 −1 0 1 0















wc
p

wc
i

wc
e

wc
r

wc
b









+







−1
0
0
0







wc
glucose. (P91)

where the first matrix is N⊤. The compound rules, on the contrary, read

0 = ĒC
p gvC + ĒA

p gvA + ĒE
p gvE + ĒR

p gvR − κwc
p

0 = ĒC
i gvC + ĒA

i gvA + ĒE
i gvE + ĒR

i gvR − κwc
i

0 = ĒC
e gvC + ĒA

e gvA + ĒE
e gvE + ĒR

e gvR − κwc
e

0 = ĒC
r gvC + ĒA

r gvA + ĒE
r gvE + ĒR

r gvR − κwc
r

−zcBM = ĒC
b gvC + ĒA

b gvA + ĒE
b gvE + ĒR

b gvR − κwc
b

or, in matrix form,








0
0
0
0

−zcBM









=









ĒC
p ĒA

p ĒE
p ĒR

p

ĒC
i ĒA

i ĒE
i ĒR

i

ĒC
e ĒA

e ĒE
e ĒR

e

ĒC
r ĒA

r ĒE
r ĒR

r

ĒC
b ĒA

b ĒE
b ĒB

r















gvC
gvA
gvE
gvR







− κ









wc
p

wc
i

wc
e

wc
r

wc
b









.

Altogether, we obtain four linear equations for the four internal economic potentials. To solve them, we need to
assign numbers to the external economic potentials and to the elasticities. We make some simple assumptions.
First, we assume that high-energy phosphates (in moles), as well as intermediates, enzymes, and ribosomes (in
carbon moles) come in equal amounts, which we set to 1. Due to dilution, and with the concentrations and
stoichiometric coefficients chosen, a steady state requires that the fluxes show the proportions (3, 1, 1, 1)⊤. For
the elasticities, we assume that: p and i exert scaled elasticities of 1/2 (partial saturation) if they appear as a
substrate or as a product; e and r would normally exert scaled elasticities of 1, but since each of them catalyses
two reactions, the elasticities are (factor of 1/2 for each reaction). By multiplying this with the fluxes (and
assuming that all concentrations have values of 1), we obtain the (transposed) unscaled elasticity matrix

Ē =









ĒC
p ĒA

p ĒE
p ĒR

p

ĒC
i ĒA

i ĒE
i ĒR

i

ĒC
e ĒA

e ĒE
e ĒR

e

ĒC
r ĒA

r ĒE
r ĒR

r

ĒC
b ĒA

b ĒE
b ĒB

r









⊤

=







−1 −1 1 0 0
1 1 1 0 0

1/3 1/3 0 1 0
1/3 1/3 0 1 0







Assuming, in addition, a dilution rate κ = 1 and an external economic potential of 4 (instead of 1, as above) for
the biomass, we obtain

wc = −([NĒ− κ I]⊤)−1[zc + Ē⊤
x N

x⊤ wx]

= −

















−8/3 −8/3 1/3 1/3 1
−8/3 −8/3 1/3 1/3 1

0 0 0 0 1
−2 −2 1 1 0
0 0 0 0









⊤

− I









−1 















0
0
0
0
4









+ 0 ·









1
0
0
0
0

















= −









−1/2 1/2 −1/4 −1/4 −1/4
1/2 −1/2 −1/4 −1/4 −1/4
0 0 −1 0 −1

3/2 3/2 −15/4 −19/4 −3/4
0 0 0 0 −1

















0
0
0
0
6









=









1
1
4
3
4









(P92)

The vector of flux demands reads wv = (2, 2, 2, 1)⊤.
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P7 Ribosome overhead cost

A ribosome overhead factor frib(κ) can be computed as follows. We assume ribosomes with concentration r (in
mM) and size Lrib (amino acids per ribosome) and non-ribosomal proteins with concentrations pl and sizes Ll.
We further assume that all ribosomes are stable, that they operate at full speed, and that a ribosomes processes
ρ amino acid molecules per second. With a cell growth rate κ and specific degradation rates κl and κrib, the
effective degradation rates (in amino acid units per second) are given by

vrib = (κ+ κrib)Lrib r, vprot =
∑

l

(κ + κl)Ll pl. (P93)

The sum of these rates must be balanced with the total protein production rate, given by vtot = ρ r. We obtain
the equality

ρ r = vrib + vprot = (κ+ κrib)Lrib r + vprot. (P94)

Solving this for the ribosome level, we obtain

r =
vprot

ρ− (κ+ κrib)Lrib
. (P95)

Thus, the effective ribosome degradation rate yields

vrib = (κ+ κrib)Lrib r =
(κ+ κrib)Lrib

ρ− (κ+ κrib)Lrib
vprot. (P96)

Assuming that ribosomes are not degraded (thus setting κrib = 0), we obtain

vtot = vprot + vrib =

(

1 +
κLrib

ρ− κLrib

)

vprot =

(
ρ

ρ− κLrib

)

vprot. (P97)
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