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Metabolism is one of the best studied fields of biochemistry, but its regulation involves processes on 
many different levels, some of which are still not understood well enough to allow for quantitative 
modeling and prediction. Glycolysis in yeast is a good example: although high-quality quantitative 
data are available, well-established mathematical models typically only cover direct regulation of the 
involved enzymes by metabolite binding. The effect of various metabolites on the enzyme kinetics is 
summarized in carefully developed mathematical formulae. However, this approach implicitly 
assumes that the enzyme concentrations themselves are constant, thus neglecting other regulatory 
levels – e.g. transcriptional and translational regulation – involved in the regulation of enzyme 
activities. It is believed, however, that different experimental conditions result in different enzyme 
activities regulated by the above mechanisms. Detailed modeling of all regulatory levels is still out 
of reach since some of the necessary data – e.g. quantitative large scale enzyme concentration data 
sets – are lacking or rare. Nevertheless, a viable approach is to include the regulation of enzyme 
concentrations into an established model and to investigate whether this improves the predictive 
capabilities. Proteome data are usually hard to obtain, but levels of mRNA transcripts may be used 
instead as clues for changes in enzyme concentrations. Here we investigate whether including 
mRNA data into an established model of yeast glycolysis allows to predict the steady state metabolic 
concentrations for different experimental conditions. To this end, we modified an established ODE 
model for the glycolytic pathway of yeast to include changes of enzyme concentrations. Presumable 
changes were inferred from mRNA transcript level measurement data. We investigate how this 
approach can be used to predict metabolite concentrations for steady-state yeast cultures at five 
different oxygen levels ranging from anaerobic to fully aerobic conditions. We were partly able to 
reproduce the experimental data and present a number of changes that were necessary to improve the 
modeling result.  
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1. Introduction  

Cellular metabolism is one of the key components of living systems. Its most basic 
functions are to generate the energy and the building blocks necessary to sustain the cells' 
life. Elucidation of central carbon metabolism, the source of energy for all heterotrophic 
life, is one of the success stories of biochemistry: function and mechanism of most of its 
components are known in considerable detail. A large class of the regulatory mechanisms 
of metabolism is well understood: the catalytic function of many enzymes is influenced 
by metabolites present in the cell. This kind of interactions have been successfully 



2  J. Bruck, W. Liebermeister & E. Klipp 

quantified in enzyme kinetic laws, which has led to ODE based models of metabolic 
pathways with considerable predicting power, as described in [4, 2, 7] and applied 
among others in [9, 5, 11]. 

However, metabolism is also regulated by other functional units of the cell, most 
importantly the transcriptional-regulatory system. It acts by changing the concentration 
of various enzymes via regulated production and degradation. This kind of regulation is 
necessary for the cell to steer its metabolism to meet its needs under various conditions. 
However, change in protein levels is usually not implemented in kinetic models: these 
typically adopt kinetic expressions for the included reactions with fixed maximal 
velocities, which amounts to the implicit assumption of constant enzyme concentrations. 
One of the possible reasons is that quantitative data on concentrations of single proteins 
in different experimental conditions are still lacking or rare. 

A fundamental determinant of the concentration of an enzyme's active form, and 
hence, its activity, is the amount of mRNA transcripts presents in the cell. However, 
many other layers of regulation exist, e.g. at the level of translation and allosteric 
regulation of the final protein among many others. It is controversial to what extent the 
final enzyme activity is determined by or correlated to the concentrations of its mRNA 
components. While genome-wide comparisons between mRNA and enzyme 
concentrations exist [1, 3], the abundance of a given set of proteins and their 
corresponding transcription rates should be systematically compared in different cell 
states to obtain a clearer picture. To the authors' knowledge such studies are not yet 
available.  

Based on an established ODE-based model of yeast glycolysis, we present an 
approach for modeling how metabolism is regulated by the transcriptional-regulatory 
system. In the model we include the change in enzyme concentrations in various 
experimental conditions. We used experimental data [12] from steady state yeast cultures 
with five different oxygen levels ranging from anaerobic to fully aerobic conditions. We 
implemented the change in enzyme concentrations by changing the maximal rates of the 
enzymatic reactions. For the above mentioned reasons, we determined these changes 
from mRNA concentration measurements, using them as inputs for the model. The model 
allows for computing metabolite concentrations and fluxes, which we compared to the 
corresponding experimental values. We performed parameter estimation to determine a 
set of parameters which best fit for the experimental data. 

The main question posed is the following: to what extent can experimental data for 
different cell states be explained by including expression data in the model under the 
assumption that biochemical reaction rates obey rate laws known from enzyme kinetics? 
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2. Methods 

2.1. Experimental data 

We used metabolite concentration and flux data from Wiebe et al. [12] obtained from 
cultures of Saccharomyces cerevisiae CEN.PK113-1A grown in glucose-limited 
chemostat cultures (dilution rate D=0.10/h). External conditions in these cultures could 
be controlled to a high extent. Steady-state cultures were obtained under one anaerobic 
(0% oxygen) and four aerobic conditions (0.5%, 1%, 2.8%, 20.9% oxygen in the inlet 
gas) with all other external conditions being kept constant. Measured quantities included 
biomass, concentration of external metabolitesa (Glucose, Ethanol, Glycerol), of 
intermediate metabolites (G6P, F6P, F16P, PEP, PYR, ATP, ADP, AMP, and the sum of 
3PG and 2PG concentrations), net fluxes (consumption rates of oxygen and glucose and 
exhaust rate of ethanol, glycerol and CO2) per unit of biomass, and relative fold changes 
of the mRNA concentrations compared to the anaerobic cultures for 69 genes with 
functions in carbon metabolism. 

2.2. Mathematical model 

We constructed a mathematical model of central carbon metabolism in S. cerevisiae 
based on the glycolytic pathway model by Teusink et al. [11]. The original model was 
based on measurements on steady state cell cultures under anaerobic conditions by 
comparison of experimental data of concentrations and fluxes of intermediate and 
external metabolites.  

The sum of the concentrations [NAD+] and [NADH] is a conserved moiety of the 
model. The adenosine species [ATP], [ADP] and [AMP] are not dynamical variables of 
the original model, instead, they were written as analytic expressions in term of the sum 
of high-energy phosphates. These were obtained under the assumptions that a) the sum of 
their concentrations is conserved, and b) the reaction catalyzed by adenosine kinase is 
fast in comparison to the other reactions, and hence in equilibrium. The metabolites GAP 
and DHAP are lumped to a single chemical species called “triose” reflecting the 
assumption that the transforming reaction between them (catalyzed by TPI) is also in 
equilibrium. The kinetic constants were largely obtained from experiments and fitted 
only to a minimal extent. The side branches of glycolysis contained in the model were 

                                                           
aAbbreviations: G6P: Glucose-6-phosphate;  F6P: Fructose-6-phosphate; F16P: Fructose-1,6-bisphosphate; 
Triose-P: sum of GAP: Glyceraldehyde-3-phosphate and DHAP: Dihydroxyacetone phosphate; BPG: 1,3-
bisphosphoglycerate; 3PG and 2PG: 3- and 2-phosphoglycerate respectively; PG: sum of 3PG and 2PG; PEP: 
Phosphoenolpyruvate; ACA: Acetaldehyde; AMP, ADP, ATP: Adenosine-mono-, di-, and triphosphate, 
respectively. NAD+, NADH: oxidation states of Nicotinamide adenine dinucleotide. 
Enzymes: ENO: Enolase; GAPDH: D-glyceraldehyde-3-phosphate dehydrogenase;  ADH1, ADH2: Alcohol 
dehydrogenase 1 and 2, respectively; HK: Hexokinase; PGI: Phosphogluco isomerase; PFK: 
Phosphofructokinase; ALD: Aldolase; G3PDH: Glycerol-3-phosphate-dehydrogenase; PGK: Phosphoglycerate 
kinase; PGM: Phosphoglycerate mutase; PYK: Pyruvate kinase;  PDC: Pyruvate decarboxylase; FBP1: 
Fructose-1,6-bisphosphatase. 
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found to be crucial to reproduce the data. Glycerol producing branch was simplified to 
the reaction catalyzed by the enzyme G3PDH. The products ethanol and 2CO were 
assumed to diffuse out of the cell quickly, thus their concentrations inside and outside the 
cell as equal in the steady state. We obtained the original model in SBML format from 
the JWS online database [14] (download on 26th May 2008). It is worth noting that the 
kinetic expression for PFK in the published SBML file differs from the one described in 
the article [11]; we adopted the latter version. 
 
Table 1. List of the reactions which were added to the Teusink model. Numbers in brackets refer to reactions in 
Fig.1. Square brackets denote concentrations described by dynamic variables of the mathematical model. All 
other quantities are parameters of the model: their values are either adopted from [11], set to the measured values 
of external metabolites, or estimated.  

Name Reaction Reaction rate expression 

Adenosine 
kinase (19) ATP+AMP  2 ADP  ( )eqAKmAK  [ATP]  [AMP] [ADP] [ADP]V K−  

G6P con-
sumption (3) G6P ATP ADP+ →  6 [G6P] [ATP]mG PV  

glycerol 
transport (9) outG LY   G LY  ( )mGLY out[GLY] GLYV −  

TCA (16) 
2

4 NAD  + ADP + ACE 
  4 NADH + ATP + 2 CO

( )eqTCAmTCA [ACE] [NAD] [ADP] [NADH] [ATP]V K−  

respiration (18) 
20.5 O  + NADH + 2.5 ADP

 NAD+2.5 ATP 
( )eqRESPmRESP 2O  [NADH] [ADP] [NAD] [ATP]V K−  

ATP consump-
tion (20) ATP   ADP→  mATPase [ATP]V V=  

PDC (15) 2PYR ACE + CO  
mPDC

ACE
mPDC

ACE
mPDC

PYR
mPDC

PYR
mPDC

([PYR] ) ([ACE] )

(1 [PYR] ) ([ACE] )

n nK K
V

n nK K+

−

+
 

FBP1 (6) F16P  F6P→  mFBP[F16P]V  

 
We modified the original Teusink model in several details to fit our purposes. 

Reaction numbers refer to Fig. 1, for details of the stoichiometry and the kinetic 
expressions see Table 1. 
1. We explicitly modeled the concentrations of AMP, ADP, and ATP as dynamic 

variables. The adenosine kinase reaction (reaction 19), modelled with reversible 
mass-action kinetics, was introduced to maintain the moiety conservation of the pool 
of these species. 
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Fig. 1.  Reaction scheme of the kinetic model of glycolysis. The numbers refer to the following reactions 
1:glucose transport; 2:HK; 3:G6P consumption; 4:PGI; 5:PFK; 6:FBP1; 7:ALD; 8:G3PDH; 9:glycerol diffusion; 
10:GAPDH; 11:PGK; 12:PGM; 13:ENO; 14:PYK; 15:PDC; 16:TCA; 17:ADH; 18:respiration; 19:adenosine 
kinase; 20:ATP consumption. Reaction 7 produces two Triose-P per F16P, as indicated. Subscript “out” refers to 
species outside the cell. Reactions which were added to the original model by Teusink et al. [11] are listed in 
Table 1. 

 
2. Instead of considering two side chains with constant fluxes at G6P (leading to 

glycogen and trehalose), we replaced them by a single G6P-consuming process 
(reaction 3) with irreversible mass action kinetics. We did not distinguish between 
them since we do not have measurements for metabolites or fluxes of this branches 
that would allow for distinguishing one from the other.  

3. At the end of the glycerol-producing branch, we included a diffusive transport 
reaction for glycerol out of the cell (reaction 9). 

4. The original model contains the TCA cycle in the form of a succinate production 
branch. In this reaction, two molecules of acetaldehyde are consumed to produce one 
molecule of succinate. Since our model is aimed to describe respiration, we replaced 
this reaction by a simplified description of a running TCA cycle (reaction 16) and 
the respiratory chain (reaction 18): we consider two reactions which consume 
acetaldehyde and oxygen to produce energy in form of ATP and NADH as well as 
the by-product 2CO [8]. We assumed that 2CO  concentration in the cell remains low 
due to rapid diffusion, therefore we did not include it in the backward rate 
expression of reaction 16. 

5. The ATP-consuming reactions are summarized in one effective ATPase reaction 
(20). In the original model, this reaction had constant flux which we replaced by 
irreversible mass-action kinetics. 

2
Glucoseout G6P F6P F16P

ATP  ADP

1
Glucose BPGTriose-P

PEP

Pyr

Glycerol

ACA

Ethanol

ATP   ADP

4

3
ATP  

ADP

5

6

ADP  

ATP

15

Glycerolout

9

20
ATP ADP

19
ATP + AMP 2 ADP

16

11

3PG

12

2PG

13

CO2

4 NADH  4NAD+

ATP       ADP

2 CO2

2.5 ATP
NAD+

2.5 ADP 
NADH

0.5 O2

7

18

(2)
10

NAD+ NADHNADH

NAD+
8

ADP  

ATP
14

NADH

NAD+
17
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6. Reversibility of the main glycolytic chain is crucial to obtain qualitative agreement 
with the measured fluxes. Therefore, we changed the irreversible Hill kinetics of the 
PDC reaction (reaction 15) to a reversible kinetics by including an additional term 
with a parameter ACE

mPDCK in the original rate expression as shown in the table. 
7.  Also the reaction catalyzed by PFK is irreversible and modeled without product 

inhibition. To allow for a slowing down of the glycolytic flux at higher product 
concentrations, we included the reaction catalyzed by FBP1 into the model (reaction 
6). In gluconeogenesis, this reverses the effect of PFK, but without involvement of 
ATP. 

All other parts of the model including the values of the parameters which are not 
explicitly mentioned in this article were adopted from [11].  

In contrast to glucose and glycerol, it was assumed that ethanol diffusion through the 
cell membrane is fast enough to keep the outer and inner concentrations close, therefore 
no distinction was made between extra- and intracellular ethanol. The resulting model 
has 20 reactions and 17 dynamic variables representing metabolite concentrations. It is 
available in SBML and text formats as supplementary material. 
 

2.3. Transcriptional regulation and external metabolites 

In order to include transcriptional regulation in our model, we write reaction rates for 
reaction i in the experimental condition j as  
 

( )ij ij i jV E R C= ,             (1) 

where ijE denotes the concentration of the active form of the corresponding enzymes in 
the steady state cultures, iR  denotes the rest of the kinetic expression, and Cj denotes the 
vector of all metabolite concentrations at condition j. 

We compared the four aerobic states to the anaerobic stateb. We indicate quantities 
belonging to this condition by the subscript j=0. Transcriptional regulation was 
accounted for in the following way: for each enzymatic reaction i and each aerobic 
condition j, we calculated 0ij iE E , the relative change of  enzyme concentration of the 
four aerobic states from the transcription data by setting 

 
0

ij a
ij

i

E g
E

=  (2) 

where the scaling exponent a is a constant and gij denotes the transcription fold change 
associated with reaction i in condition j. By definition, gi0=1 for every reaction. 

Assuming that the activity of an enzyme is proportional to its concentration, we 
describe the effect of transcriptional regulation on the reaction rate ijV  through replacing 
it by 
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 * a
ij ij ijV g V=  (3) 

for each reaction i and condition j. For most enzymatic reactions, we calculated gij as the 
arithmetic mean of the measured mRNA concentration fold change for the genes 
associated with reaction i. See the Appendix for the list of genes associated with each 
enzymatic reaction.  

Since the transcriptional activities corresponding to Enolase and GAPDH were not 
measured, for these reactions we computed the value of gij by averaging the values for 
the next-neighbor reactions (PGM, PYK) and (ALD, PGK), respectively.  

Also the reaction ADH was treated differently. The expression data for ADH1, 
together with ADH2, the isoenzyme responsible for converting ethanol to acetaldehyde, 
indicate that net Ethanol production is shut down with growing oxygen supply, reaching 
virtually zero in fully aerobic condition. The resulting ethanol flux also reflects this 
behavior (Fig. 2). For simplicity, instead of including ADH2, which would involve yet 
more unknown parameters, we only included the reaction for ADH1 and described its 
regulation, by setting gij to the values of the measured ethanol flux, normalized to the 
anaerobic condition. The resulting gij values for all experimental conditions are shown in 
Fig. 2. 

Fig. 2. A,B,C: fold change of mRNA concentration associated with reactions in the mathematical model, 
normalized to the anaerobic state (denoted by gij in the text). The values were calculated from the expression 
data of the genes associated with each reaction as given in the appendix. Numbers in brackets refer to reaction 
numbers in Fig.1. For reactions marked with (*), no transcript analysis was undertaken; the values were 
averaged from neighbors as described in the text.   D:  fold change of the genes ADH1 and ADH2 and the 
resulting ethanol flux. At the highest oxygen concentration the flux drops to zero (not shown in the logarithmic 
scale). 
 

The external metabolites glucose, glycerol and ethanol were represented by the model 
species Glucoseout, Glycerolout and Ethanol (cf. Fig. 1). Their concentrations were set to 
constant values according to the experimental data: Glucoseout was set to the 
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corresponding concentration in the inlet feed solution, 55.55 mmol/l, in all conditions. 
Measured glycerol concentrations was 8.90 mmol/l for the anaerobic condition, and zero 
for all aerobic conditions. Measured ethanol concentration was 75.37 mmol/l, 59.01 
mmol/l  47.56 mmol/l, 3.66 mmol/l, and 0 mmol/l for the conditions with 0%, 0.5%, 1%, 
2.8%, and 20.9% oxygen, respectively. 

2.4. Parameter estimation 

We performed parameter estimation on a subset of the model parameters to achieve 
agreement with the data. Metabolite concentrations were compared with concentrations 
in the model. The measured fluxes for glucose, oxygen, ethanol, glycerol and 2CO  were 
each compared to the rates 0.5r1,  r18,  r17,  r8,  r15 + 2r16, respectively, where ri denotes 
the rate of the reaction i in Fig. 1. 

We quantified goodness of fit for each possible set P of values for the estimated 
parameters by the following cost function:  

 ( )
sim exp 2

2

( )
Cost( ) exp( ) 1kj kj

kjk j

V V
P κ

σ
−

= + −∑  (3) 

where we denote the steady-state value of a metabolite concentration or flux k for the 
condition j by sim

kjV and exp
kjV for simulation results and experimental data values, 

respectively. sim
kjV  values were obtained by runs of 10000 seconds of simulation time. 

21 kjσ is a weight factor in which σ is often set to the value of the experimental error. 
However, this choice does not reflect an appropriate weight measure in our case, since 
we do not expect to be able to reproduce the experimental data within the errors. At the 
same time, small experimental error of a quantity does not necessarily correlate with 
higher importance of a good fit compared to other quantities with larger errors. To assign 
the same weight to all relative deviations, we set kjσ to be proportional to sim

kjV  in the 
following way:  

( )
exp exp

exp exp

0.15 ,                 in case    0,

0.15 min ,       in case    0,

kj kj kj

kj kjk jj

V V

V V

σ

σ

= ⋅ ≠

= ⋅ =
 

where exp
k jV  denotes all nonzero values for the concentration or flux k among all 

conditions. To avoid non-steady state solutions, we introduced a penalty term 
( )( )exp 1κ −  in the cost function. The term κ quantifies the deviation of the solution 

from steady state. It is defined as 

17 3
comp last

1 1

( ) ( )k kl
k l

x t x tκ
= =

= −∑∑  , 
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where xk(tlast) denotes the simulated value of the concentration xk at the last time instance 
tlast =10000 sec, and  xk ( comp

lt ) denotes its value at some earlier time instance comp
lt . The 

values comp
lt  where chosen as comp last

1 0.5t t= ⋅ , comp last
2 0.75t t= ⋅ , and comp last

3 0.8t t= ⋅ .  
We estimated a total of 31 parameters which was an acceptable number given a total 

number of data points of 70. The values of all other parameters were taken from [11] . 
We estimated the following groups of parameters: 
1. Since the experiment by Wiebe et al. and the experiments underlying the Teusink 

model differ in the experimental conditions and the yeast strain, we could not rely on 
the absolute enzyme concentrations to be comparable. Therefore, we fitted all Vm 
values and the diffusion coefficient for reaction 9 (20 parameters). 

2. We also fitted the new kinetic parameters of the reactions that were added to the 
original model (4 parameters, cf. Table 1.)  

3. The sum of  [NAD+] and [NADH] is a conserved quantity of the model, determined 
by the initial concentrations of these species. Since experimental data were not 
available, we estimated this quantity for each condition separately (5 parameters). 

4. We fitted the scaling exponent a from Eq. (2).  
5. Concentration units: reaction rate expressions in our model are based on enzyme 

kinetics and hence the concentrations of the reactants need to be known. However, 
all metabolite concentrations and fluxes were measured in units per gram dry weight 
of biomass (gDW). The values were determined after collecting the cells from the 
culture by centrifugation, washing by distilled water, and drying to constant weight 
at 100Cº. To determine the cytosol concentrations of the measured values, the net 
cytosol volume of the cells of 1gDW is needed. Although estimates for this number 
exist (amounting 1g dry weight to 2 ml cytosol, [13]), we preferred to fit this 
quantity along with the other parameters of the model. 

 

2.5. Genetic algorithm and semiglobal search 

We adopted the genetic algorithm Differential Evolution [16] to search for a parameter 
set with best fit to the experimental data. In a truly global search, parameters could 
assume any values between zero and infinity, with the aim to find a global optimum of fit. 
However, we found that this approach was not practicable since many parameter sets are, 
although in principle viable, not practical to work with. Some may not generate a steady 
state (for example due to accumulation of F16BP), others require long computation times.  

Therefore we developed the following semi-global approach: at a given time, only a 
limited region of parameter space was screened. This was achieved by limiting each 
parameter to a certain range. If a parameter repeatedly (4 out of the last 5 times) 
produced values in the upper or lower 20% of its search range, the range was relocated 
such that the parameter value corresponding to the hitherto best result became the center 
of the search range of this parameter. If this process would have resulted in a negative 
value for the lower limit, the latter was set to zero. The width of the search range was 
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kept constant during the process and was determined at the beginning of the parameter 
estimation to be ( )0 0(1 ) ,  1r p r p− +⎡ ⎤⎣ ⎦ where p

0
 denotes the initial value of the parameter 

and r was set to 0.5.  
Since evaluating the cost function (Eq. 3) involves integrating a system of 20 

differential equations numerically, we used various software tools to convert the SBML 
model to an executable C-code for faster integration [6, 10]. The integrator used in the 
process was CVODE from Sundials [15]. 
 

3. Results 

3.1. Parameter estimation 

We ran four parameter estimation processes to find model parameter values which 
produce the best possible fit to the experimental data. Fig. 3. shows the evolution of the 
goodness of fit (as quantified by the cost function) and the value of five parameters 
during a parameter estimation process (data for all parameters published as 
supplementary file).  

Most, but not all parameters converged to a certain value. However a unique 

parameter set with best fit could not be determined within the available computing time 
(24 hours of computing time amounting to roughly 7000 generations on an AMD 3800+ 
processor), since a number of parameters did not converge to similar values during these 
parameter estimations (data not shown).  

 
Fig. 3.  Evolution of goodness of fit (cost) of the best parameter set (top left) and corresponding values of five 
of the 31 model parameters during a parameter estimation process of ca. 49000 generations. Shown are values 
corresponding to the parameter set with the best fit to data (as defined by the cost function, see text) after a 
certain number of generations. The momentary search range for each parameter (see text for description) is 
specified by upper and lower bounds (shown by lines). The parameters fmrna (called a in the text), fwstst, 
nadsum_3 are explained in section 2.4 under points 4, 5 and 3, respectively. GLYtrs_VmGLY denotes the 
diffusion coefficient in reaction 9, and vPDC_KmPDCACE denotes the constant  in reaction 15 (cf. Table1). 
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Notably, these parameter sets produced mostly similar simulation values. As shown 
in Fig. 4., the largest quantitative differences between the predictions generated by the 
four parameter sets can be observed in the simulation results for F16P concentration (0% 
oxygen) and of the O2. 

Some of the parameters were seemingly not, or only weakly determined, i.e. their 
values did not matter for change in the cost function. This was to be expected, since only 
about two third of the dynamical variables of the model is measured. Since the number of 
data points (70) is more than twice the number of parameters (31), we do not expect 

overfitting to occur. 
 

3.2. Comparison to experimental data 

Experimental data of metabolite concentrations and fluxes over the five experimental 
conditions and corresponding simulation results are shown in Fig. 4.  

The mathematical model was able to reproduce the experimental data to varying 
extents. In general, the concentration values of the metabolites in upper glycolysis (G6P, 

 
Fig. 4.  Concentrations and fluxes of metabolites: comparison of experimental values and simulation results 
with parameter sets resulting from four different estimation runs (which we terminated after 49973, 49959, 
12435, and 12678 generations of the Differential Evolution algorithm). 
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F6P, F16P) and of the adenosine species (ATP, ADP, AMP) were reproduced better than 
those of lower glycolysis (PG, PEP, PYR) and the metabolite fluxes. In the latter group, 
the decrease of pyruvate concentration and that of carbon dioxide and ethanol fluxes with 
higher oxygen concentrations was reproduced as a tendency, but neither the exact 
absolute values, nor the sharp difference between anaerobic and aerobic conditions was 
reproduced correctly by the model. Also the predicted increase of the O2 flux with 
external oxygen concentration was qualitatively correct, but the experimental values for 
cultures with higher oxygen concentrations were not reproduced correctly. However, 
other measured quantities show distinctly different behavior from our simulation results: 
the model failed to reproduce the measured decrease of the glucose flux with increasing 
oxygen concentration predicting nearly constant simulation values instead, as well as the 
similar behavior of the glycerol flux for which it predicted an increase. 
 

4. Discussion 

We explored whether an established mathematical model of yeast glycolysis, created to 
describe one anaerobic condition, could be extended to describe different cell states 
corresponding to experimental conditions with various oxygen concentrations. To this 
end, regulation through enzyme concentration changes and a simple model of the TCA-
cycle and respiratory chain were included in the model.  

As enzyme data were not available, we assumed that differential enzyme 
concentrations and differential mRNA concentrations are related by a power law with a 
single exponent. This assumption is of course questionable: enzyme concentrations are 
also regulated posttranscriptionally, so changes in enzyme levels can, in principle, take 
place irrespective of differential expression and vice versa. However, a monotonous 
relationship between the two quantities holds, at least, on average; in a comparison of 
mRNA and protein levels for different genes, a scaling exponent of about 0.6 has been 
reported [1].  

In our attempt to reproduce the experimental data, we were led to make a number of 
further changes in the original model. Most remarkably, we found that a number of 
reactions of the pathway (either by altering the kinetics as in PDC, or by including a 
reverse reaction such as FBP) needed a reversible description for the following reason: 
As we compared steady state cultures with higher concentration of oxygen, the data 
clearly showed that flux through glycolysis decreases in spite of upregulation of most 
enzymes in carbon metabolism (while the ethanol producing branch is simultaneously 
shut down).  Although at first somewhat counterintuitive, this behavior can be 
reproduced without introducing posttranscriptional regulation into the model. In our case, 
the flux of the pathway is redirected from fermentation to respiration, i.e. to a branch 
with typically considerably lower reaction rates. This can result in a lower flux if 
concentrations of some metabolites rise enough to slow down the reactions producing 
them. Speaking in loose terms, the pipeline of the pathway becomes “jammed” which 
causes the flux slowing down. In contrast, fast diffusion of ethanol during fermentation 
may keep the lower glycolysis concentrations low, which speeds up the reactions. In 
principle, upregulating the enzyme production might even be an attempt of the cell to 
keep the flux through the pathway as high as possible. However, in a mathematical 
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model, this effect is only possible if the kinetics of each reaction is chosen such that the 
reaction rate is sufficiently slowed down by rising product concentration. This is true for 
reversible reactions, but not true for the irreversible kinetic expressions we replaced in 
the original model.   

Although the introduced changes increased the agreement with the experimental data, 
at this stage the model did not agree with the data in a number of points. Probably most 
important is the measured decrease of glucose flux in spite of a general upregulation at 
higher oxygen concentrations. It is possible that further refinement of the model will lead 
to at least qualitative agreement with the experiment in this point. 

There are a number of possible ways to refine the method presented here. Increasing 
the number of data points compared to the number of parameters to be estimated is, of 
course, desirable. An important special case would be the experimental determination of 
a remaining conserved quantity, the sum of [NAD+] and [NADH]. Lacking such data, we 
fitted this quantity for each condition separately. Regarding the model input, including 
appropriate measurement data on the transcriptional activity of GAPDH or Enolase 
would probably also improve the model. However, this can change its behavior only to 
the extent to which these values behave differently from their neighbors. The parameter 
estimation process was found very demanding in terms of computational power. 
Increasing its speed and finding well-defined parameter sets is a necessary technical step 
in further development. 

Kinetic models have been successful in describing metabolism in cell states in which 
its explicit regulation through changing enzyme concentrations is negligible. Developing 
a class of models describing this additional layer regulation is a logical next step, and this 
might enable us to describe – or even predict - various states of the cell with one single 
model.  
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Appendix 

Enzymatic model reactions and genes associated with them in brackets (for ENO, 
GAPDH, ADH, see text): HK(GLK1, HXK1), PGI(PGI1), PFK(PFK1, PFK2), 
ALD(FBA1), G3PDH(GPD1, GPD2), PGK(PGK1), PGM(PGM1), PYK(PYK1, PYK2); 
PDC(PDC1), TCA-Cycle(CIT3, KGD1, SDH1, SDH2, SDH3, SDH4, FUM1, LSC1, 
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LSC2, PDA1, PDB1, CIT2), Respiratory chain(CYB2, COX5a, COX5b, CYC1, CYC7, 
NDE1, NDE2), FBP1(FBP1) . 
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