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Problem

Functional properties of biochemical networks depend on both the network structure
and the kinetic parameters. While extensive data on network topologies have been
collected in databases like KEGG [1], much less information is available about the
kinetic constants or metabolite concentrations. Depending on the values of these
parameters, network variables (here: steady state fluxes, metabolite concentrations,
or metabolic control coefficients) may vary within a wide range. We study [2]
whether topological knowledge, together with uncertain or partial knowledge of the
parameters, can be used to make probabilistic statements about the network
variables. Assuming that the parameters follow statistical distributions, we calculate
the resulting distributions of the network properties, applying Monte Carlo simulation
and an approximation method based on Metabolic Control Analysis [3,4].

Biochemical Reaction Networks

Differential equation systems for change of metabolite concentrations ¢;

ds. < = . N={n;} - stoichiometric coefficients,
7; = Z"UV/‘ $= IW(SJE) v~ rates, p - parameters
=1
The dynamical/functional properties of a biochemical reaction network depend on
both its structure and its parameters.

Network structure Q
eReaction stoichiometry
eIrreversibility / Reversibility
sExternal metabolites

Network parameters p

Real positive numbers with units

eConcentrations of external metabolites

eKinetic parameters: Rate constants k;
Inhibition constants
K,-values, V.,

eEquilibrium constants, from AG

eActivation / Inhibition

eFeedback / Feedforward regulation

Network properties Z = Z(Q,p)
Steady state properties: concentrations, fluxes, elasticities, control coefficients, ...

Dynamic behavior: bifurcations, oscillations, characteristic times ...

eReaction systems can show steady states, oscillations, chaos
eAssume steady state s with stationary fluxes J :17(555,7?)

*Response coefficients quantify, in first order, the change of steady states
after perturbation of the system.

Y _ dlnY;
Pi dlmp;

R - response coefficient,
Y- flux or concentration, resp.

Parameter Distributions

Quantify uncertain knowledge about kinetic parameters
e Measurement uncertainty

 Biological variability

* Choice of parameter values from a typical range

We use log-normal distributions in all these cases.
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Distributions of Variables

Monte Carlo sampling

Simulations with random parameters from the specified distribution yield samples
from the true distribution of variables.

Analytical approximation

e Applicable to parameters of small variance
e Linearize system around standard parameter set (mean log. parameters)

« Variables are log-normal, with covariance matrix
N A \T
cov(log y)= Ry cov(log p)(RIJ,’)

where R ; denotes the matrix of normalized response coefficients.
The coefficients of variation for single variables read:

O-i/,u[ _ [evar(log ,v,~) -1

Example: Branched Reaction Networks

Branched reaction network with or without features like

feedback inhibition or irreversibility: Upon varying parameters //
(chosen independently), steady state concentrations and ™
fluxes are smeared over several orders of magnitude.
Concentrations Concentration control coefficients
Lognormal distribution Change sign upon parameter variation
1 =
30 Sorted lst of control coefficients /;)1 .
225 | 0.5 ,/// Direction of
§ZD | csi A 1  concentration
515 I Vi — e change upon
S10 I\ | /"/ [ gene expres-
[ I\ | sion increase
0 /’ \\
0 0.20.40.60.8 1 1.21.4 200 300
Log Conc # of simulation
Sign of fluxes Relative number of positive fluxes in 10% simulation runs.
D.St 0.57¢ D.Slt

y o 6:/4\153 Uﬁ/ 054
o.f o.}@'\:ﬁ
'Qis 05 063 1% ;}‘As'\)isz 052 071 0.48%Q Q) 076
LA &5 Py 2 o ;w‘\ﬂ W—»
As o va ‘\)ASASZ 0.6 0.45

.5 0:8\4 ,43 Dm3

t 046

£

05 “f/'

>
05

P

to.

-
°

with one irreversible reaction: with feedback inhibition

local effects

—
equal probabilities for all parameters
equal probabilities for all flux directions

The network structure has a probabilistic influence on the flux directions,
without determining them strictly.

Conclusions

Using probability distributions of kinetic parameters, we could infer probabilistic
statements about network variables. We propose to measure the robustness of
dynamic quantities (steady state fluxes, concentrations etc.) with respect to the
variability of kinetic parameters by the respective coefficients of variation. The
investigation of networks structures must be accompanied or accomplished by
studying the kinetics of the individual interactions.
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