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Abstract

We investigate a model of optimal regulation, intended to describe large-scale differential gene expression. Relations between
the optimal expression patterns and the function of genes are deduced from an optimality principle: the regulators have to
maximise a fitness function which they influence directly via a cost term, and indirectly via their control on important cell
variables, such as metabolic fluxes. According to the model, the optimal linear response to small perturbations reflects the
regulators’ functions, namely their linear influences on the cell variables. The optimal behaviour can be realised by a linear
feedback mechanism. Known or assumed properties of response coefficients lead to predictions about regulation patterns. A
symmetry relation predicted for deletion experiments is verified with gene expression data. Where the optimality assumption is
valid, our results justify the use of expression data for functional annotation and for pathway reconstruction and suggest the use
of linear factor models for the analysis of gene expression data.
© 2004 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

Differential gene expression can provide informa-
tion about the function of genes. Coregulation of
genes has been related to shared function(Brown
et al., 2000), interacting proteins(Grigoriev, 2001), or
protein complexes(Jansen et al., 2002). Expression
data have been used to reconstruct metabolic path-
ways(Zien et al., 2000)and to annotate genes(Zhou
et al., 2002). Expression profiles can be decomposed
into linear basis profiles(Alter et al., 2000; MacKay
and Miskin, 2001; Fellenberg et al., 2001; Lazzeroni
and Owen, 2002; Liebermeister, 2002; Moloshok
et al., 2002), some of which are related to the regula-
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tion of distinct cellular processes. Although relations
between gene function and differential expression (or
the regulatory machinery behind it) have often been
stated, their theoretical justification is usually not an
issue. We show that such relations can be deduced
from a principle of optimal regulation.

Regulation of cellular processes can be studied
with respect to both its mechanism and its function.
A particular gene expression pattern, for instance, can
be attributed to acausa efficiens, such as a signalling
pathway, which physically influences the transcript
levels. Accordingly, expression data have been used
to identify regulatory motifs in the genome(Brazma
et al., 1998; Bussemaker et al., 2001). On the other
hand, expression may be explained by acausa finalis,
namely the fact that the gene products are needed by
the cell under the given conditions. Biologists often
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tacitly presume a form of teleonaturalism(Allen,
1999) where “needed by the cell” translates to “in-
creasing the cell’s biological fitness, and thus selected
for during evolution”. The present analysis of opti-
mal regulation is based on the assumption that living
organisms do not only have certain optimality prop-
erties in their basic (healthy) state but also respond to
perturbations in an optimal way. They are assumed to
reach a state that is optimal under the new conditions,
thus partly compensating for the impairment due to
the perturbation. This assumption is corroborated by
a huge number of observations, many of which are
well-known. For example, blind people develop an
improved perception of sounds, and the decrease in
blood glucose due to starvation is partly compensated
for by the degradation of glycogen.

To assume optimality is certainly an idealisation,
but often used as an approximation of biological real-
ity (Edwards et al., 2002; Heinrich et al., 1987, 1996;
Klipp and Heinrich, 1999; Segrè et al., 2002). Opti-
mality of flux distributions has been studied(Edwards
et al., 2002; Segrè et al., 2002), and theoretical pre-
dictions based on optimisation could be validated by
experiment(Ibarra et al., 2002). A relation between
the optimal regulation of enzymes and their control
on fluxes has been derived in(Klipp and Heinrich,
1999). Optimal control of time-dependent processes
(Pontryagin et al., 1962)has been studied intensely,
and also been applied to control of metabolic systems
(Klipp et al., 2002). We propose a quantitative analysis
of optimal differential expression (ANODE) in order
to formalise intuition about “sensible” expression pat-
terns: a system of regulatory variablesx (for instance,
gene transcript levels) affects a system of output vari-
ablesy (seeCornish-Bowden and Cárdenas, 1993),
such as metabolic fluxes. The states of both systems
are evaluated by a common fitness functionF(x, y).
We study the behaviour of ideal regulators which al-
ways adapt their values such as to maximise the local
fitness. Among the output variablesy, we shall con-
sider only the “relevant” ones, namely those which
actually play a role for the fitness function.

The text is organised as follows: inSection 2, the
mathematical model is presented and optimal regu-
lation patterns for different types of external pertur-
bations are derived. A symmetry prediction for gene
deletion experiments is tested with experimental data.
In Section 3, we shall study the coregulation of regu-

lators which control metabolism or which act in mod-
ules. Besides this, predictions for expression data are
summarised.Section 4is concerned with a linear feed-
back model that realises optimal regulation, with the
evolutionary advantage of regulation, and with a re-
lation between expression and growth in the presence
of deletions. The results of this work are discussed
in Section 5. The appendix contains a mathematical
proof and a list of mathematical symbols.

2. Optimal linear regulation of stationary states

To illustrate our approach, let us consider how
metabolic systems are controlled by differential ex-
pression of enzymes. Metabolic fluxes depend on cel-
lular processes that produce or consume metabolites,
on environmental parameters like nutrient supply, and
on parameters influencing the enzymatic activities,
such as temperature. In addition, metabolism is ac-
tively controlled by regulatory processes on different
time scales: while fast responses are realised by acti-
vation and inhibition of enzymes, slow adaptation can
be achieved by adjusting their expression. The linear
influence of enzyme concentrationsEk on stationary
fluxes Ji is quantified by the response coefficients
matrixRJE. Metabolic control theory(Heinrich et al.,
1996; Kahn and Westerhoff, 1991)describes how
fluxes respond to changes of enzymes, which may be
caused by changes in gene expression. One may also
ask the inverse question: which enzyme changes are
necessary to achieve a desired metabolic behaviour,
such as homoeostasis or constrained maximisation of
fluxes?The answer to this question depends on (1) the
control of enzyme activities on metabolism, as studied
by metabolic control analysis, and (2) assumptions
about the objectives of the cell, described by a fitness
function.

The performance of cellular subsystems can be
rated by their contribution to the evolutionary fitness
of the organism, that is, the expected long-term repro-
duction of the organism. In a particular environment,
a few fluxes may effectively determine biomass pro-
duction. For a metabolic system, we may consider a
simple fitness functionV(J) scoring only those impor-
tant fluxes, and assume that there is an evolutionary
tendency to maximise this function. Such an objec-
tive function was studied previously(Heinrich et al.,
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1987), notably the (mathematical) product of the two
independent fluxes in a reaction system representing
glucose metabolism. In the whole cell, many pro-
cesses depend on common resources, so an optimal
compromise must be chosen. The enzyme levels can
adapt the metabolic system to external fluctuations
and will thereby effectively increase the fitness, but
enzyme production itself consumes cellular resources,
which can be described by a negative contribution
U(E) to the total fitnessF(E, J) = U(E) + V(J).
The optimal behaviour with respect toF represents a
compromise between benefit and costs(Reich, 1983).

As a simple example (shown inFig. 1), let us con-
sider a chain of two chemical reactionsS0 ↔ S1 ↔
S2 with mass-action kinetics

v1 = k1E1S0 − k−1E1S1
v2 = k2E2S1 − k−2E2S2

(1)

whereE1 andE2 denote the enzyme concentrations.
At fixed concentrationsS0 andS2, the stationary flux
J = v1 = v2 reads

J = E1E2(S0k1k2 − S2k−1k−2)

E1k−1 + E2k2
(2)

A reasonable and frequently used ansatz for the fitness
function is to use the flux itselfV(J) = J (Heinrich
et al., 1987, 1996; Savinell and Palsson, 1992), while
the enzyme levels are rated by a negative function

U(E) = −γ1(E1 + E2)− γ2(E1 + E2)
2 (3)

Fig. 1. Adaptation of enzyme levels. A linear chain of two reactions (left) is controlled by two enzymesE1 andE2. Their performance
is evaluated by a fitness functionG(E1, E2). In this example, the fitness is given by the stationary fluxJ minus the costsU(E1, E2) of
protein production. The right diagram shows the fitness landscapeG(E1, E2), for two values of the external substrateS0 (solid and dashed
contour lines, respectively). The perturbation ofS0 causes a shift of the optimum, indicated by the arrow.

The linear term describes costs per protein molecule,
e.g., for the consumption of amino acids. High rates
of protein synthesis require additional efforts, for in-
stance, an increased production of ribosomes, which
is punished by the quadratic term.

Maximising the effective fitness

G(E)≡ F(E, J(E)) = −γ1(E1 + E2)

− γ2(E1 + E2)
2 + J(E1, E2) (4)

with respect toE1 and E2 yields unique optimal
enzyme levels(Ē1, Ē2). A small perturbation of the
parameters, such as the concentrations of external
metabolites or the rate constants, changes the fitness
landscapeG(E). The optimum is shifted (seeFig. 1,
right), but the enzyme levels can be adapted to reach
new optimal values.

We shall now determine a linear approximation for
the optimal response, written in the differential no-
tation dĒ. At the local optimum, the gradient of the
fitness function with respect to the enzyme concentra-
tion vanishes

0 = GE ≡ ∇EG =



∂G

∂E1

∂G

∂E2


 (5)

The total differential ofGE can be written as dGE =
dĜE +GEE dE, where the first term d̂GE describes a
change due to the parameter perturbation. The second
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termGEE dE reflects an adaptation dE = (dE1dE2)
T

of the enzymes, with

GEE ≡



∂2G

∂E2
1

∂2G

∂E1∂E2

∂2G

∂E2∂E1

∂2G

∂E2
2


 (6)

The optimal adaptation d̄E must ensure thatEq. (5)
holds after the perturbation as well, so the respective
differential dḠE has to vanish, and therefore

0 = GEE dĒ + dĜE (7)

→ dĒ = −G−1
EE dĜE (8)

This example illustrates what we shall now tackle in a
general way. A long-term objective is to explain cor-
relations in genome-wide differential expression data.
Calculating the optimal expression values would in
principle require a model of the whole cell. However,
the optimal response to small perturbations can be
predicted from local properties of the model (namely
derivatives) at the initial optimal state, so knowledge
about metabolic response coefficients can be used to
predict the coregulation of genes.

2.1. The mathematical model

The model of optimal regulation proposed in this
section describes biological regulators which control
stationary states. The cell state is described by a set of
output variablesy that depend on regulatory variables
x and on environmental parametersα. The symbols
x, y, andα denote vectors. Small changes ofy are
expanded as

�y(x, α)≈ (RxyRyα)
(
�x

�α

)
+ 1

2

(
�x

�α

)T

×
(
R
y
xx R

y
xα

R
y
αx R

y
αα

)(
�x

�α

)
(9)

The linear influences of the regulators and the en-
vironment ony are described by the response co-
efficients Ryx and Ryα (Heinrich et al., 1996). The
second-order response coefficientsRyxx andRyxα de-
scribe the quadratic effects ofx and α (Höfer and
Heinrich, 1993). Both x andy are rated by a fitness

function F(x, y) which, for simplicity’s sake, is as-
sumed to have the additive form (see alsoReich,
1983; Savinell and Palsson, 1992)

F(x, y) = U(x)+ V(y) (10)

The gradientFy = ∇yF(x, y) will be called the
marginal fitness ofy, in analogy to the marginal util-
ity defined in economics(Henderson and Quandt,
1980). The marginal fitnessFx = ∇xF(x, y) of x
is defined accordingly. The matricesFxx andFyy of
second-order derivatives contain the curvatures of the
fitness function. IfU is a sum of terms depending on
the individual regulators, thenFxx is diagonal. Some-
times an “isotropic” case will be considered where
Fxx is a scalar times the identity matrixI. The effec-
tive fitnessG(x, α) ≡ F(x, y(x, α)) is a function ofx
andα alone, with derivatives

Gx(x, α) = ∇xF(x, y(x, α)) = Fx + RyTx Fy
Gxx(x, α) = ∇x∇Tx F(x, y(x, α))

= Fxx + RyTx FyyR
y
x + Txx

(11)

asFxy = 0 (seeEq. (10)). Txx represents the tensor
product1 (Txx)ik ≡ (Fy)l(R

y
xx)
l
ik. It describes an effec-

tive fitness curvature due to the cooperation of regula-
tors, for instance gene products acting in a complex,
such as in metabolic channelling(Cornish-Bowden
and Cárdenas, 1993). Instead of assuming the cost
termU(x), one could describe the costly side-effects
of gene expression by additional output variablesy.
Thex-dependent fitness termFxx would then reappear
as a part ofTxx.

The optimality principle postulates that, for any
given α, the regulators assume a valuex̄(α) to reach
a local fitness maximum (seeFig. 2, right). Optimal-
ity at x̄(α) implies thatGx vanishes, soFx andFy are
balanced according to

Fx = −RyTx Fy (12)

To ensure a unique local maximum, the effective
fitness curvature matrixGxx must have negative
eigenvalues, soGxx is invertible. If the number of
regulators exceeds the number of output variables,

1 Superscripts and subscripts represent variables and derivatives,
respectively. According to the sum convention, terms are summed
over all indices which occur both as superscript and as subscript.
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Fig. 2. Model of optimal regulation. Top left: The system variablesy depend on the environmentα and on the regulatorsx. The fitness
function F scores bothx and y. Bottom left: The optimal behaviour can be implemented by feedback signals betweeny to x (see
Section 4.1). Optimality (dotted arrows) is ensured by an appropriate choice of the feedback coefficientsRy. Right: Optimal response to
a perturbation ofy. A one-dimensional case is shown while in general,x, α andy are multidimensional. For fixed environmentα, y is a
function y(x, α) of x (shown by dashed lines, for two values ofα). The slope of this line is called the response coefficientR

y
x. The fitness

function F(x, y) (shown by solid contour lines), evaluated on the constraint line, yields the effective fitnessG(x, α) (shown below). After
a change ofα, x has to adapt itself to reach again an optimal state (dots) maximisingG.

then Ry
T

x FyyR
y
x in Eq. (11) has some vanishing

eigenvalues, but by an appropriate choice ofU(x), a
maximum can be ensured.

In the following, we shall study regulators in an
optimal state which encounter a perturbation: two
scenarios are studied, namely perturbations ofy by
perturbation ofα, and perturbations of individual
regulatorsxi. In both cases, the optimal response dx̄

to maximise dF will be calculated in a local approx-
imation. Concerning the initial optimal state, some
simplifying assumptions are made: locally, all values
of y can be reached by an appropriate choice ofx,
that is,Ryx has full row rank. This implies that the
dimension ofy does not exceed the dimension of

x and thatRyxF−1
xx R

yT

x is invertible. In general, the
fitness function may depend on additional parame-
ters, and the output variables may not be controlled
independently. Formulae for these cases, additional
model properties, and proofs for the formulae in the
following sections can be found inLiebermeister,
2004.

2.2. Adaptation to a perturbation of output variables

Let us consider the optimal response to external per-
turbations ofy, whereα changes by a small amount
dα. If the regulators remained constant (dx = 0), y,
Fy, andRyx would change by d̂y ≡ R

y
α dα, dF̂y ≡

FyyR
y
α dα, and d̂Ryx, respectively, where the latter is

defined by the tensor product(dR̂yx)li ≡ (R
y
xα)

l
ikdα

k.
In this text, two sorts of differentials will be dis-
tinguished: those with a circumflex (e.g., dŷ) denote
changes due to an external perturbation for fixedx,
while those with a bar (e.g., dȳ) contain the additional
effect of an optimal response dx̄. Our objective is to de-
termine d̄x to maximise the fitnessG(x+dx̄, α+dα).
This requires that d̄Gx must vanish, leading to (proof:
Appendix A).

dx̄ = −G−1
xx dĜx (13)

where

dĜx = Ry
T

x dF̂y + dR̂y
T

x Fy
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The terms contributing to d̂Gx describe two effects of
the perturbation:̂Gx may change the marginal fitness
of y, and it may also change the regulatory properties
expressed byRyx. The latter happens, for instance,
as enzymatic parameters are changed in a metabolic
network.

While Eqs. (13) and (14)are a very general result,
simple consequences can be drawn if the second effect
is negligible becauseFy or Ryxα is sufficiently small.
With this simplification, the optimal response reads

dx̄ = −(Fxx + Txx + RyTx FyyR
y
x)

−1Ry
T

x FyyR
y
α dα

(14)

The symmetric matrixTxx can be formally incorpo-
rated into an effective fitness curvatureF∗

xx = Fxx +
Txx. Note that only the second derivatives of the fitness
appear in the formula, because the first derivatives are
initially balanced (seeEq. (12)).

Instead of being neglected, the second term in
Eq. (14) can also be incorporated into the first one.
This is possible if the normalised response coeffi-
cientsxk/yi(R

y
x)ik, which describe relative influences,

remain constant, because then

(dRyx)ik
(R
y
x)ik

= dyi
yi

→ dRyx = dg(dy)dg(y)−1Ryx (15)

The symbol dg(y) denotes a diagonal matrix with the
elements of the vectory in its diagonal.

The last term ofEq. (14)can be rewritten as

Ry
T

x dg(Fy)dg(y)−1 dŷ (16)

and be incorporated into the first term: bearing in mind
that F̂y = Fyy dŷ, we obtain

dĜx = Ry
T

x (Fyy)+ dg(Fy)dg(y)−1dŷ = Ry
T

x F
∗
yy dŷ

(17)

So effectively the second term has disappeared,
while F∗

yy contains an additional contribution

dg(Fy)dg(y)−1. Is it a reasonable assumption that
normalised response coefficients are not affected by
perturbations? For a linear reaction chain with lin-
ear kinetics, the normalised response coefficients do
indeed not depend on the substrate concentration
(Heinrich et al., 1996), while they do depend on the
enzyme parameters. Thus, the assumption holds for a

perturbation of the substrate, but not for a perturbation
of enzyme parameters.

2.3. Obtaining a change of the output variables

Let us now consider a different scenario where a
fixed change dy must be obtained by the regulators.
Under the constraint that dy = R

y
xdx̄, the fitness is

maximised by2

dx̄ = F−1
xx R

yT

x (R
y
xF

−1
xx R

yT

x )
−1dy (18)

In the isotropic case, this reduces to dx̄ = R
y+
x dy,

with the pseudoinverse3 of Ryx. If the fitness termU
rates the regulators separately,Fxx is diagonal, and
the diagonal elements(Fxx)ii appear as weights in the
formula: a large negative curvature leads to a weak
response of the respective regulator dx̄i. For reasons of
consistence,Eq. (18)must also hold for any optimal
response dy = dȳ−dŷ after a perturbations dα. Thus,
we obtain the important result that for isotropicFxx,
any optimal expression profile is a linear combination
of regulatory profiles, that is, the rows ofRyx. On the
other hand, ify must keep its original value despite a
perturbation dα, the actual changeRyxdx̄+ Ryα dα has
to vanish, so we set dy = −Ryα dα.

2.4. Adaptation to a perturbation of individual
regulators

Besides perturbations of the output variablesy, we
can study perturbations of individual regulatorsx. In
the case of gene expression, such perturbations may
be realised by gene deletions(Hughes et al., 2000)
or RNA interference(Fire, 1999), or may result from
hereditary enzyme deficiencies. In the model, one
regulator is moved away from the local optimum
of the fitness landscapeG(x, α), and the others can
compensate for the loss. Let us assume that regu-
lator xi is changed4 by a fixed value d̂xi, that is,

2 Proof: The optimal d̄x is determined by the conditionF(x +
dx̄, y + dy) = max with the constraintRyx dx̄ = dy, which can be
solved using Lagrangian multipliers.

3 The pseudoinverse of a matrixA is defined asA+ ≡
(ATA)−1AT.

4 Alternatively, the perturbation can be modelled as a marginal
fitness change d̂Gx = Fxβ dβ̂ due to an additional parameterβ
in the fitnessG(x, α, β). The optimal response then reads dx̄ =
−Gxx dĜx.
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Fig. 3. Interplay between regulators in the fitness landscapeG(x, α) for fixed environmentα. Left: The fitnessG with respect to two
genesx1 and x2 has elliptic contour lines, with the optimum in the centre (A). Constrainingx1 to a smaller value (dashed line) would
decrease the fitness (B). An activation ofx2 damps the fitness loss (C). The fitness landscape shown may result from a gene duplication:
if both genes exert the same influence ony and if Fxx = 0, then the maximum of the fitness (diagonal contour lines) is non-unique. A
finite termFxx regularises the effective fitness functionG (i.e., it causes all eigenvalues ofGxx to be nonzero), which leads to the elliptic
contour lines. The termFxx can be caused by a nonlinear effect in the cost termU(x): for example, it might be more costly to synthesise
two isoenzymes than to synthesise one enzyme with a given function. Right: Cooperation can be induced by second-order response terms
R
y
xx contributing toF∗

xx. If genesx1 and x2 are both necessary for the same process, they tend to be coregulated.

dx̂ ≡ (0 · · · 0 dx̂i 0 · · · 0)T . The systemic response
of the other regulators reads5

dx̄ = G−1
xx

1

(G−1
xx )ii

dx̂ (19)

The small perturbation of a single gene leads to a
fitness loss

d2G = 1

2
dx̄TGxxdx̄ = 1

2

(dx̂i)2

(G−1
xx )ii

(20)

Small diagonal elements ofG−1
xx imply large fitness

losses and may indicate essential genes.
Depending on the curvatures of the effective fitness

landscape, gene pairs will either show coregulation or
anti-coregulation as one of the genes is deleted (see
Fig. 3). Both kinds of behaviour are possible even
for genes exerting the same first-order control, de-
scribed byRyx. Cooperating genes may also be coreg-
ulated on an evolutionary time-scale, by mutations:
if one gene is deleted, a deletion of the second one
may become an advantage. Thus, pairs of cooperat-
ing genes may become visible in phylogenetic profiles
(Pellegrini et al., 1999), while pairs of genes com-

5 Proof: The optimal regulatory profile dx̄ has to fulfilGx(x+
dx̄, α)−λdx̂ = 0, whereλ is a Lagrangian multiplier. We expand
Gx(x + dx̄, α) ≈ Gx(x, α) + Gxx dx̄. As Gx(x, α) = 0 for the
unperturbed state, dx̄ = λG−1

xx dx̂. From d̄xi = dx̂i follows λ =
1/(G−1

xx )ii.

pensating for each other should show phylogenetic
anti-correlation(Morett et al., 2003).

2.5. Symmetric compensation of deletions

Let us consider a deletion experiment in which, in
the ith sample, genexi (logarithmic expression value)
is downregulated by d̂xi. According toEq. (19), the
expression matrixX with the experiments in the rows
should be be decomposable into

X = G−1
xx D (21)

whereD is diagonal. The symmetry ofG−1
xx implies

a symmetric relation between the genes: if the loss
of geneA leads to an activation of geneB, gene
A should also be activated after the loss of geneB.
Matrices derived from experimental data according to
Eq. (21)were tested for their symmetry (seeFig. 4):
Ideker et al. (2001)studied deletions of enzymes
in the galactose pathway. The estimate6 of G−1

xx ac-

6 We adjusted the column and row means of the whole data
set (log 10 expression ratios) to zero and chose all available data
to construct a matrix related to the genes GAL1, GAL2, GAL3,
GAL4, GAL7, and GAL10 and the respective knock-out mutants.
We then calculated the difference matrixX between the respective
“+gal” and “-gal” samples and determined a diagonal matrixD
such that the mean squares for the rows ofXD−1 were similar
to those of the columns. To do so, we iteratively normalised
the matrix rows by the ratio between the sum of squares within
columns and within rows.
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Fig. 4. Symmetric response to deletions. We studied expression matrices from deletion experiments: the columns correspond to deleted
genes, while the rows correspond to the measurement of the same genes. According toEq. (21), matrices were decomposed into a diagonal
matrix and an estimate of the inverse fitness curvature matrixG−1

xx . Symmetry of the reconstructedG−1
xx was tested for two data sets. Left:

The matrix extracted fromIdeker et al. (2001)shows a strong symmetric part. Right: Matrix extracted fromHughes et al. (2000). The
symmetric part is weak, but significant (see text).

cording toEq. (21) shows a strong symmetric part.
Hughes et al. (2000)deleted 248 genes7 of various
functions: hereG−1

xx shows only weak symmetry. The
reason may be that many genes knocked out were
transcription factors of various functions, so we can
expect weak off-diagonal elements inGxx. However,
for metabolic genes, the matrix still contains a signif-
icant symmetric part8. Thus reciprocal compensation
is found within the galactose pathway, but much less
between different functional subsystems of the cell. It
is questionable whether a gene deletion can be treated
as a small perturbation. In some cases, this may in-
deed be the case, notably if the effects of the deletion
are sufficiently buffered by the adaptation of other
genes.

7 Some genes were represented by more than one ORF.
8 Only the 53 genes annotated with an EC number, according

to KEGG (Kanehisa et al., 2002), were chosen. Values for which
the estimated error of log ratios exceeded 2 or two times the
absolute value were neglected, and variance stabilisation(Huber
et al., 2002)was applied to the remaining values. For determining
D, the neglected values were formally set to 0. The symmetry of
the resulting matrix is weak. To decide whether the symmetric
part was still significant, the standard deviations of the symmetric
and antisymmetric parts (for the “reliable” off-diagonal elements)
were calculated. The ratio of about 1.7 has aP-value of about
0.01, according to a permutation test in which the order of the
matrix rows was randomised 500 times.

2.6. A cascade of responses distributes the
perturbation

Near a fitness maximum, a regulatory systemx
buffers fitness fluctuations, in analogy to le Châtelier’s
principle, and this buffering can be described by a
cascade of responses. Let us recallEq. (13): if the
marginal effective fitness of the regulators is perturbed
by an amount d̂Gx, the matrixG−1

xx describes how this
perturbation becomes distributed over the whole sys-
tem. If the fitness curvature with respect tox is high,

that is, ifF−1
xx R

yT

x FyyR
y
x has small absolute eigenval-

ues, thenG−1
xx can be expanded into a power series

(compareHeinrich, 1985)

G−1
xx = (1 + F−1

xx R
yT

x FyyR
y
x)

−1F−1
xx

=
∞∑
n=0

(−F−1
xx R

yT

x FyyR
y
x)
nF−1

xx (22)

The series describes superposed responses of differ-
ent order: an immediate response to the perturbation,
which may have unfavourable side-effects, a response
to these effects, and so on. The complete response rep-
resents a systemic compromise between all effects of
the regulators. It has to be stressed that the cascade
does not describe time-dependent behaviour. On the
other hand, ifFxx + Txx is small (Fxx + Txx → 0),
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Eq. (14)yields

dx̄ ≈ −Ry+
x F

−1
yy dF̂y (23)

as it would result from optimising first dy, and then
dx.

3. Control of structured systems

3.1. Coregulation

Let us consider a large number of perturbations ap-
plied in separate experiments. Coregulation of genes
can be quantified by the linear correlation, that is, the
covariance between gene profiles, normalised by the
square roots of their variances. Let us assume that
the second term inEq. (14), describing a perturbation
of the response coefficients, can be neglected. In this
case, a simple relation holds between the optimal reg-
ulation pattern d̄x and the marginal fitness change dF̄y

dx̄ = −F−1
xx R

yT

x dF̄y (24)

Given the covariance matrix cov dF̂y between the
marginal fitness perturbations ofy, the covariance ma-
trix between the responses dx̄i reads

cov(dx̄)=G−1
xx R

yT

x cov(dF̂y)R
y
xG

−1
xx

= F−1
xx R

yT

x cov(dF̄y)R
y
xF

−1
xx (25)

For strong isotropic fitness curvature (Fxx → −∞),
this becomes, in first order

cov(dx̄) ∝ Ry
T

x cov(dF̂y)R
y
x (26)

In this approximation, two genes are coregulated if
they have strong effects on the same variables, or on
variables with large common marginal fitness fluctua-
tions. Accordingly, cooperating enzymes are likely to
be coregulated, as it was empirically shown for inter-
acting proteins(Grigoriev, 2001), permanent protein
complexes(Jansen et al., 2002), and subsets of coop-
erating enzymes(Schuster et al., 2002).

3.2. Metabolic systems

We shall now consider the control of a metabolic
system where the variablesy represent stationary
fluxes J or concentrationsS, while the regulatorsx

represent enzyme activitiesE. Here the summation
and connectivity theorems of metabolic control the-
ory (Heinrich et al., 1996)imply relations between
the optimal regulation patterns and the structure and
kinetics of the metabolic network.

A metabolic system (Heinrich et al., 1996;
Heinrich and Schuster, 1998)can be characterised by
the following quantities: the stoichiometric matrixN
contains the stoichiometric coefficients, each column
describing one of the reactions.K is a maximal ker-
nel matrix of stationary fluxes, fulfillingNK = 0. The
link matrix L (Reder, 1988)is defined byN = LN0,
whereN0 contains a maximal set of linearly inde-
pendent rows ofN. By relating the concentrations of
all metabolites to those of the independent ones, the
link matrix describes the conservation relations. The
elasticitiesεik ≡ dvi/dSk describe how the reaction
velocities depend on the metabolite concentrations,
in a linear approximation. Thus, the columns ofεL
contain the immediate change in reaction rates, as
the concentration of an independent metabolite is
changed. The response coefficientsRSE and RJE de-
scribe the linear influence of enzyme concentrations
(regarded as parameters) on steady state quantitiesS

andJ and can be decomposed into a productRJE =
CJπE (similar for RSE). The elasticitiesπE describe
the linear influence of the enzyme concentrations on
the reaction rates. Systemic effects of the local per-
turbation are expressed by the control coefficientsCJ

andCS describing the change of steady-state concen-
trations or fluxes due to a small parameter change
affecting only thekth reaction.

(CJ)ik ≡ ∂Ji/∂p

∂vk/∂p
(27)

(CS)ik ≡ ∂Si/∂p

∂vk/∂p
(28)

The control coefficients can be calculated by (see
Heinrich et al., 1996)

CS = −L(M0)−1N0 where M0 = N0εL (29)

CJ = 1 + εCS

They fulfil the summation and connectivity theorems
(seeHeinrich et al., 1996) of metabolic control theory(
CJ

CS

)
(K εL) =

(
K 0

0 −L

)
(30)
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Fig. 5. Optimal regulation of a metabolic model system. We consider a simple network of irreversible reactions (top left box) containing
eight metabolites (shown as rectangles). The metabolitesS1, S3, S6, andS8 (shaded) are considered external. Each reactionJi is catalyzed
by an enzyme (regulator)Ei. The fitness function depends on the fluxesJ1, J2, andJ6, and on the enzyme concentrations. Top right: Each
diagram shows the optimal response to a specific perturbation ofJ1, J2, or J6, respectively. The effect of the adaptation is shown by the
arrows: arrowheads indicate the direction of the immediate flux changeRJEdĒ caused by regulation. The numbers denote the adaptations
dĒi, normalised to max(|dĒi|) = 1 for each diagram. All enzymes are involved in the systemic response, which counteracts the initial
perturbation. Bottom: In each diagram, one of the enzymesE1, E3, E6, E9 (indicated by a thick arrow) is inhibited, that is, constrained
to a lower value. The remaining enzymes adapt themselves and damp the perturbation.

Optimal regulation of metabolic fluxes is illustrated
in Fig. 5: as an example, we consider a simple net-
work of irreversible reactions, containing 8 metabo-
lites, four of which are external. Each reactionJi is
catalyzed by an enzymeEi. A value of one was chosen
for the elasticity between a reaction and its substrate,
while all other elasticities vanish. The fitness function
depends on the fluxesJ1, J2, andJ6, and on the en-

zyme concentrations. The “relevant” fluxesJ1, J2, and
J6 are evaluated by a fitness function with the local
curvature matrixVJJ = −I. A functionU with equal
curvaturesUEE = −I describes the fitness contribu-
tion of the enzyme levelsEi. The slopes of the fitness
do not appear in the formulae and thus need not be
specified. For illustration, we assume specific external
perturbations that decrease one of the relevant fluxes
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while leaving the others unchanged. We consider the
two scenarios fromSections 2.2 and 2.4: the diagrams
in the upper box show the optimal response (accord-
ing to Eq. (14)) to a specific perturbation ofJ1, J2, or
J6, respectively. In each diagram in the lower box, one
of the enzymesE1, E3, E6, E9 is inhibited, that is,
constrained to a lower value. The remaining enzymes
adapt themselves optimally, according toEq. (19).
For both scenarios, all enzymes respond in a coordi-
nated way: fluxes in the whole system are redirected
to increase the perturbed flux, and thus to damp the
perturbation.

3.3. Consequences of the metabolic theorems

If the output variables describe metabolic fluxes or
concentrations, then the theorems of metabolic control
theory (Eq. (30)) lead to sum rules for the differential
regulation profiles.

We shall now consider the optimal profiles (en-
zyme activities or the respective expression values)
to achieve a change dY of metabolic variables, for
instance dY = dȲ − dŶ in the presence of a perturba-
tion dŶ . If the output variablesy describe metabolic
fluxes or concentrations, then the theorems (30) of
metabolic control theory lead to sum rules for the
differential regulation profiles. In this section, the
regulatory variables are supposed to describe en-
zyme concentrationsEi. The elasticity matrixπE is
considered invertible, which holds, for instance, if
each enzyme catalyzes exactly one reaction. Accord-
ing to Eq. (18), the optimal regulation profile d̄E
fulfils

(πTE)
−1FEE dĒ = CY

T

(RYEF
−1
EER

YT

E )
−1 dY (31)

If the costs of different enzymes are independent of
each other and each enzyme catalyzes exactly one re-
action, then bothFEE and πTE are diagonal. In this
case, d̄E∗ ≡ (πTE)

−1FEE dĒ equals d̄E up to a rescal-
ing of the individual elements. The first term on the
right-hand side ofEq. (31) is the transposed control
coefficients matrix: so, like any metabolic flux distri-
bution is a linear combination of the columns ofCJ ,
dĒ∗ is a linear combination of control profiles (the
transposed rows ofCJ ).

If the output variables represent either only fluxes or
only concentrations, thenEq. (31)leads to sum rules
for dĒ∗:

(1) If the fitness termV depends only on concen-
trations, the summation theoremCSK = 0 yields

dĒ∗T K = 0 (32)

For the proof, we transpose Eq. (31), postmultiply with
K, and apply the summation theorem:

dĒ∗T K = dST (RSEF
−1
EER

ST

E )
−1CSK = 0 (33)

A similar argument yields d̄E∗T CJ = 0.
(2) If the fitness termV depends only on fluxes, the

connectivity theorem yields the sum rule

dĒ∗T εL = 0 (34)

because

dĒ∗T εL = dJT (RJEF
−1
EER

JT

E )
−1CJεL = 0 (35)

Similarly, we obtain d̄E∗T CJ = dĒ∗T and dĒ∗T εCS =
0. These results resemble the statements for opti-
mal enzyme concentrations derived in(Klipp and
Heinrich, 1999), where the sum of enzyme concen-
trations was kept fixed.

What is the meaning of the above sum rules? The
first one, for the control of metabolites, implies that the
elements of d̄E∗T , summed over any stationary flux
distribution, vanish. This holds, in particular, for the
sum over any elementary mode(Schuster et al., 2000).
As an example, let us consider the regulation of a
metabolite in an unbranched chain: the stationary flux
is described byK = (1,1, . . . ,1,1)T . According to
the sum rule, the scaled differential expression values
in the chain sum to zero:∑
i

(πE)
−1
ii (FEE)ii dĒTi = 0 (36)

Indeed, the most efficient way to accumulate the
metabolite is to activate the upstream enzymes and to
inhibit the downstream enzymes.

The second rule, for the regulation of fluxes, pre-
dicts dependencies among the regulation patterns of
neighbouring enzymes. If no conservation relations
hold among the metabolites (L = I), then theith col-
umn of εL describes the reaction elasticities with re-
spect to theith metabolite. If the reaction velocities
depend only on the concentrations of their own sub-
strates and products, then all elements of the column
vanish, except for the reactions of this metabolite. The
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sum ruleEq. (34)yields one linear equation for each
metabolite: if the metabolite participates inn reactions
(subscripted byi), then the scaled expression values
dĒ∗ for the respective enzymes fulfil∑
i

dĒ∗T
i εi = 0 (37)

In a series of experiments, the expression data of the
n enzymes, will be confined to an(n−1)-dimensional
subspace. If a metabolite is involved in two reactions
only, the ratio of the expression values dĒ∗

i is fixed,
that is, they are strictly correlated. In an unbranched
reaction chain, each metabolite will usually exert a
negative and a positive elasticity on the producing and
on the consuming reaction, so the changes of enzyme
expression will all have the same sign and will be
strictly correlated.

It is sometimes convenient to represent regulators,
fluxes, and concentrations by logarithmic values.
Then, the control coefficients have to be replaced
by normalised control coefficients dg(J)−1CJdg(J)
and dg(S)−1CSdg(J) (seeHeinrich et al., 1996) in
all formulae of this section. In addition,K and L
have to be normalised by the stationary fluxes and
concentrations, yielding dg(J)−1K and dg(S)−1L.

3.4. Functional modules

The statistical properties of the response coeffi-
cients reflect the system’s large-scale structure. Let us
assume that the cell contains specialised subsystems
(Kahn and Westerhoff, 1991), such as protein com-
plexes or reaction networks maintaining particular
metabolic fluxes. In this case, the response coefficients
will assume almost sparse values, concentrated within
functional subsystems (seeSchuster and Schuster,
1992). For enzymes acting in modules or complexes,
Eq. (31)has an interesting consequence: a module of
n regulators which affects onlym < n of the output
variables will show differential expression that is con-
fined to anm-dimensional subspace. If the proteins
form complexes and if each protein belongs to one
complex only, the response coefficients matrix can be
decomposed into a productRyx = R

y
cR

c
x whereRcx has

a block structure. In this case,Eq. (24) implies that
genes acting in the same complex show proportional
differential expression, that is, their linear correlation
is ±1.

3.5. Predictions for expression profiles

The proposed model yields a quantitative relation
between response coefficients, a fitness function, and
the optimal response of regulators to small perturba-
tions. Unfortunately, at present, we cannot test the
theory by predicting real gene expression patterns,
because only few response coefficients are known for
appropriate systems, and the fitness function can only
be guessed. Experimental expression values may carry
considerable measurement errors, and moreover, en-
zyme activities would be better candidate regulators
because they determine the cell’s performance more
directly. Expression usually has an effect on activity,
but empirically, the correlation between them may be
weak. For all these reasons, we shall restrict ourselves
to summarising some qualitative predictions from the
model.

Some properties of expression patterns follow from
the model structure without involving optimality, and
could also be derived from a linear causal model the
linear response implies linear dose response curves
and a linear superposition of different perturbations.
Asymptotic responses after the onset and after the
end of a perturbation, or to perturbations of opposite
sign, are symmetric. Asymptotically, a perturbation is
buffered and distributed by a cascade of responses.
Thus, perturbation may affect subsystems which do
not seem directly concerned. For instance, a heat shock
response may be supported by an increase of energy
production(Mensonides et al., 2002).

Other predictions reflect the relation between func-
tion and expression induced by the optimality as-
sumption: the response is an appropriate answer to
the perturbation, and is likely to contribute to ho-
moeostasis. Expression patterns reflect the response
coefficients on the relevant variables: ifFxx and πx
are diagonal, differential expression patterns after a
perturbation of cell variables are linear combinations
of regulatory profiles. Even if the response coeffi-
cients are not known, this can be used for qualitative
predictions: genes that do not affect the concerned
output variables remain unchanged. Gene products
that always act together are coregulated. Superfluous
gene products are downregulated so that resources
can be allocated to other, more important processes.
These intuitive assertions are qualitatively backed
by expression data from several experiments (for
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instance,DeRisi et al., 1997; Gasch et al., 2000;
Causton et al., 2001). If the genes’ response coef-
ficients on important variables are sparse or almost
sparse, they might be reconstructed from expression
profiles using analysis methods like the plaid model
(Lazzeroni and Owen, 2002)or independent compo-
nent analysis(Liebermeister, 2002). However, such
a decomposition would also be possible for a causal
model if the genes’ regulatory functions were linear
with sparse input weightswxy. For metabolic systems,
the model predicts coregulation of genes with a high
control on important fluxes. The chemical reactions
exerting large control on a particular flux or concen-
tration are often localised in a small region of the
metabolic network, so the same should hold for some
of the coregulated genes. Quantitative relations to the
structure and kinetics of the metabolic network were
described inSection 3.2.

4. Implementation and value of regulators

4.1. Optimal control realised by feedback

Until this point, we studied the optimal behaviour
of regulators without considering how it is realised.
Biological regulators often receive signals from the
processes to be regulated: this phenomenon is known
as feedback. Gene expression, for instance, is con-
trolled by transcription factors that provide informa-
tion about the cell status. It is a basic assumption of
the present analysis that during evolution, adaptation
mechanisms for coping with variable environmental
conditions have developed and can be described by
optimality principles. This assumption is now used for
describing feedback systems: the objective is to derive
a feedback system that realises the optimal behaviour
of regulators defined above.

Let us consider a system of interacting regulatorsx

and cell variablesy in a stationary environmentα: if α
is replaced byα+ da, then the stationary state values
of x andy exhibit changes (seeFig. 2, left bottom)

dx = wxy dy
dy = R

y
x dx+ Ryα dα

(38)

The linear coefficientswyy represent the partial deriva-
tives of a (possibly nonlinear) feedback function. For
example, the activity of an enzyme can be affected by

a metabolite concentration via allosteric control. At
steady state, this concentration, in turn, is a function
of all enzyme concentrations in the reaction network.

A small perturbation dα results in a response

dx = (1 − wxyRyx)−1(wxyR
y
α)dα (39)

With an appropriate choice

wyx = −F−1
xx R

yT

x Fyy (40)

this feedback model realises optimal regulation, that
is, it maximises the fitness for all possible perturba-
tions da (Proof: compareEqs. (24) and (38)). How-
ever, this only holds if the second term in 14, de-
scribing a perturbation of the response coefficients,
is neglected. The feedback to a regulator depends on
the regulator’s influencewxy weighted by the fitness
curvatures. An output variable with large negative fit-
ness curvature will send strong feedback signals, a
regulator with large negative fitness curvature will re-
ceive weak signals. So, feedback signals represent the
most important variables and affects the most efficient
regulators. Let us consider again allosteric control in
metabolism: if homoeostasis in metabolism is to be
ensured,Eq. (40)predicts feedback from metabolites
to those reactions exerting a considerable control on
the metabolite. If the curvaturesFxx andFyy are neg-
ative and the reaction exerts a positive control on the
metabolite, a negative feedback is predicted.

4.2. The value of regulators

What quantitative advantage does a regulatory sys-
tem mean the organism? To answer this question, we
have to refer to an specific ensemble of external con-
ditions: if the perturbations dα are small and normally
distributed with mean〈dα〉 = 0 and covariance matrix
cov(dα) = 〈dαdαT 〉, the presence of the regulating
system raises the fitness, on average, by

〈Ḡ− Ĝ〉 = −1

2
Tr(GaxG

−1
xx Gxa cov(dα)) (41)

AsGxx has no positive eigenvalues, the value〈Ḡ−Ĝ〉
of the regulatory system is nonnegative. The name
“value” has been chosen in analogy to the value of in-
formation defined in Bayesian decision theory(Pearl,
1988): the value of an information source is defined
as the average advantage (increase in expected pay-
off) if signals from the information source can be used
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for the decisions. Evolution is likely to develop reg-
ulators of high value: if the very presence of a regu-
latory system involves additional costs, it should only
be maintained if its value exceeds the costs. Like the
value of information, which depends on the presence
of other information sources, the value of regulators
may be influenced by the presence of other regulators.
For instance, adding copies of existing regulators to
the system will not yield much additional fitness.

4.3. Growth of deletion mutants

After a change of the environmental conditions,
some gene products may become especially impor-
tant for surviving. They should be activated, and their
loss by a deletion should have a strong impact on
the growth rate, while the loss of a dispensable gene
should play a minor role. Thus a relation between
expression data and the growth rates in deletion ex-
periments may be hypothesised.Giaever et al. (2002)
studied the growth rate of yeast deletion mutants un-
der different experimental conditions and compared
the results to expression data for the same conditions:
except for the growth on galactose, their experiments
gave only weak evidence for such a relation, but this
was seen as a surprise. The model of optimal regula-
tion, though, supports the initial hypothesis, predicting
a quantitative relation between the data from expres-
sion and deletion experiments.

How should a deletion influence the growth rate un-
der different conditions? A small environmental per-
turbation�α and a small regulatory change�x lead
to a fitness change

�G≈GTx�x+GTα�α+ 1

2
(�xTGxx�x

+�αTGα�α+ 2�xTGxα�α)

=
[
GTx�x+ 1

2
�xTGxx�x

]

+
[
GTα�α+ 1

2
�αTGα�α

]
+�xTGxα�α

(42)

The fitness change consists of three terms, one caused
by the deletion, one due to the changed conditions, and
one representing the interaction between both effects,
which should manifest themselves in the data matrix.
If the rows and columns of the data matrix are cen-

tred, the matrix will basically represent the interaction
term. According toEq. (19), the optimal response to
a deletion�x̂i is �x̄ = 1/(G−1

xx )iiG
−1
xx �x̂. Inserting

this into the interaction term from (42) yields the fit-
ness loss

1

(G−1
xx )ii

�x̂Ti G
−1
xx Gxα�α (43)

For each genei, this term is proportional to the dif-
ferential expression under the different conditions de-
scribed by�α (see Appendix, Eq. (A.4)).

5. Discussion

We have presented a theoretical apparatus for de-
scribing the adaptation of living cells to perturbations
of environmental or internal parameters. We have
made a distinction between regulatory variables and
output variables. Specific examples could be the
concentrations of gene products (e.g., enzymes) and
metabolic fluxes. Accordingly, we have used gene
expression as a running example. However, the pre-
sented theoretical tool is far more general. Moreover,
it is applicable to systems of any size. A promising
application of our method is the analysis of DNA
microarray experiments where healthy states are com-
pared with perturbed (e.g., diseased) states. However,
the proposed model is not limited to gene expression:
it may be applied to the design of various regulatory
systems on different timescales, such as enzyme ki-
netics, allosteric control, adaptation of receptors, and
even evolution of enzyme properties.

The success of the method largely depends on
the choice of the fitness function. This is a gen-
eral problem in the modelling of optimal properties
of living organisms(Allen, 1999; Heinrich, 1985;
Heinrich et al., 1987). In any case, the biological costs
for the regulatory variables should be taken into ac-
count. This can be done (and has been done here) by
including, in the fitness function, a negative term ex-
pressing these costs. In unbranched enzymatic chains,
equating the fitness function with the metabolic flux
minus a linear combination of enzyme concentrations
is a reasonable choice(Reich, 1983). In either case,
biological behaviour is regarded as the solution to an
economical problem(Reich, 1983), namely to choose
an optimal compromise between possible actions
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which maximises a utility function(Henderson and
Quandt, 1980). A related optimisation problem also
appears in biotechnology, namely to increase the
yield of a metabolite by the modification of single
genes: the costs depend on the number of genes to be
engineered, so only th genes which exert the highest
control on the respective metabolite will be modified.
On the contrary, the present model, in which the num-
ber of responding genes does not play a role, claims
that all genes should be adapted, but those with the
highest control should be adapted most strongly.

Considering small perturbations has allowed us to
use differential calculus. As has been shown earlier
in Metabolic Control Analysis, the large changes oc-
curring in biological systems can, in many cases, be
described by linearly extrapolating small changes; in
other cases, they cannot. Here, we included first-order
and second-order terms. However, for deriving sim-
ple predictions, we neglected second-order terms in
the fitness coupling dx and dy, and also second-order
terms iny(x, α) which couple dx and dα.

5.1. Structure–function relation of regulators

An interesting result is that optimal regulatory pro-
files tend to portray aspects of the system to be reg-
ulated. The regulators’ response reflects the functions
of the regulators, that is, their influence on relevant
variables, as well as the local shape of the fitness
landscape. If the fitness function is isotropic with re-
spect to the regulators, the differential expression pat-
tern is a linear combination of regulatory profiles, i.e.,
rows of the response coefficients matrix. As an impor-
tant example, we have analysed metabolic systems:
among other things, we have derived a sum rule for
the enzymes within metabolic flux modes (metabolic
pathways), and a relation between enzymes that cat-
alyze the reactions of a metabolite. In both cases, we
have used the summation and connectivity theorems
of Metabolic Control Analysis.

A convenient way of self-regulation of biological
systems is by feedback. We have applied our method
to feedback systems and have obtained the result that
also optimal feedback signals reflect the function of
regulators. Thus the proposed model predicts a gen-
eral relation between a gene’s function, its optimal
expression behaviour, and its regulatory program. In
this framework, the task of a gene is to maximise the

organism’s fitness under typical evolutionary condi-
tions by exerting its function. The behaviour ofx de-
pends on a dual variable, namely the marginal fitness
Gx = ∇xG = Fx + FyR

y
x, which has to remain zero

despite any perturbation. The marginal fitness reflects
the response coefficients, so during evolutionary learn-
ing, information about the functional structure of the
cell becomes implicitly stored in the regulatory sys-
tem. This information can be read by probing the regu-
latory system with perturbations, or by measurements
of biological fluctuations.

An example of this structure–function relation are
operons, where sets of cooperating genes are con-
trolled by the same transcriptional machinery, thus
functional relations are portrayed qualitatively by the
regulatory structure. Another example can be found in
the regulation of amino acid synthesis: the aspartate
kinase is the first enzyme in the pathway for the syn-
thesis of threonine, isoleucine, lysine, and methionine.
The three isoenzymes AspKI, AspKII, and AspKIII re-
ceive negative feedback signals from the amino acids,
thus “portraying” the strong control of aspartate kinase
on amino acid levels. This pattern of regulation even
appears on two levels of regulation, as the feedback
signals are realised by both allosteric inhibition and re-
pression of gene expression (seeLengeler et al., 1999).

5.2. Validity of the optimality assumption

When expression data are published, authors often
relate expression patterns to biological purpose, that
is, the function of the genes being up- or downregu-
lated. Our model is meant to formalise such assertions
by deriving them from explicit assumptions, in order
to find out what can be predicted from an optimality
principle alone. However, it is not clear to which ex-
tent biological regulators realise an optimal behaviour.
Segrè et al. (2002)found evidence for non-optimal
adaptation of metabolic fluxes after gene deletions in
E. coli, but their ansatz for the fitness function does
not account for costs of the expression machinery, so
it cannot be compared directly to the approach of this
work. Experiments(Hughes et al., 2000; Giaever et al.,
2002)have shown that gene deletions can increase the
growth rate of yeast. According to our theory, the cell
would anticipate any possible advantageous deletion
by downregulating the respective genes, so no further
increase would be possible. The present theory may
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fail here for various reasons: either no steady-state
function is optimised by the cells, or the growth rate
is not the (only) optimisation target. Moreover, the ex-
perimental conditions possibly did not reflect the typ-
ical environment during evolution, or the deletion had
side effects that could not be achieved by a change in
expression alone.

One cannot hope to deduce all biological behaviour
from optimality principles, and it is an open question
in which cases optimality assumptions are valid. At
least, two conditions should be met: the experiment
must probe the cell with physiological conditions to
which the system has accustomed during evolution,
and for our analysis, the perturbations must be small.
In fact, if a regulator is only indirectly concerned,
it will experience an effective perturbation that has
already been sufficiently buffered by the other regula-
tors, and then even a large or unphysiological perturba-
tion like a gene deletion may be described by a linear
theory.
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Appendix A. Optimal response

We consider an effective fitnessG(x, α) ≡ F(x, y

(x, α)) and expandGx ≡ ∇xG(x, α) to first order

Gx(x+ dx, α+ dα)

≈ Gx(x, α)+Gxx(x, α)dx+Gxα(x, α)dα (A.1)

The total differential reads

dGx =Gx(x+ dx, α+ dα)−Gx(x, α)
=Gxx dx+Gxα dα (A.2)

An optimal initial state withGx(x, α) = 0 becomes
perturbed by dα. Without response d, this implies three
changes

dR̂yx ≡ R
y
xα dα (A.3)

dF̂x ≡ FxyR
y
α dα

dF̂y ≡ FyyR
y
αdα

The optimal response dx̄ must ensure that dGx van-
ishes, so

dx̄ = −G−1
xx (Gxα dα) (A.4)

with

Gxx ≡ Fxx + Txx + RyTx FyyR
y
x + FxyR

y
x

+ (FxyR
y
x)
T

Gxα ≡ R
yT

x FyyR
y
α + FxyR

y
α + Txα

(A.5)

The matrices(Txx)ik = (Fy)l(R
y
xx)
l
ik and (Txα)ik =

(Fy)l(R
y
xα)

l
ik are calculated from the tensorsRyxx and

R
y
xα containing the second derivatives ofy(x, α).

We assume thatGxx has negative eigenvalues, so it
is invertible. Rewriting the term in brackets from
Eq. (A.4)

dĜx =RyTx (FyyR
y
α dα)+ (FxyR

y
α dα)+ (Ryxα dα)TFy

=RyTx dF̂y + dF̂x + dR̂y
T

x Fy (A.6)

yields

dx̄ = −G−1
xx [Ry

T

x dF̂y + dF̂x + dR̂y
T

x Fy] (A.7)

Thus, the regulators react to the three effects (see
Eq. (A.3)) of the perturbation. For simplicity, we as-
sume thatF(x, y) = U(x) + V(y) implying Fxy = 0,
so dF̂x = 0. This yields

dx̄= −(Fxx + Txx + RyTx FyyR
y
x)

−1

× (RyTx dF̂y + dR̂y
T

x Fy) (A.8)

Appendix B. Symbols used

x Regulatory variables Vector
α Environmental variables Vector
y(x, α) Regulated variables Vector
(R
y
x)ik ≡ ∂yi∂xk Response coefficients Matrix

(R
y

ab)
k
il Second-order response

coefficients w.r.t.a andb
Tensor
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Appendix B (Continued )

F(x, y) Fitness function Scalar
Fx ≡ ∇xF Marginal fitness ofx Vector
Fy ≡ ∇yF Marginal fitness ofy Vector
G(x, α)

≡ F(x, y(x, α))

Effective fitness scalar

Gx ≡ ∇xG Effective marginal
fitness ofx

Vector

(Gxx)ik
≡ ∂2G/(∂xi∂xk)

Effective fitness
curvature

Matrix

Tab ≡ FTy R
y

ab Effective fitness
curvature due to
second-order response

Matrix

dα Perturbation ofα Vector
dx̄ Optimal response ofx Vector
Ry Feedback coefficients Matrix
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