 Published in IET Systems Biology
_ Received bh 31st August 2007
Revised on 24th June 2008 , \‘
 doi:10.1049/iet-syb:20070042

www.ietdl.org

BT ournals i

ISSN 1751-8849%

Nested uncertainties in biochemical models
J. Schaber W. Liebermeister E. Klipp

Humboldt University Berlin, Institute for Biology, Theoretical Biophysics, Invalidenstr. 42, 10115 Berlin, Germany

E-mail: klipp@molgen.mpg.de

Abstract: Dynamic modelling of biochemical reaction networks has to cope with the inherent uncertainty about
biological processes, concerning not only data and parameters but also kinetics and structure. These different
types of uncertainty are nested within each other: uncertain network structures contain uncertain reaction
kinetics, which in turn are governed by uncertain parameters. Here, the authors review some issues arising
from such uncertainties and sketch methods, solutions and future directions to deal with them.

1 Introduction

Mathematical modelling of dynamic biological processes is
an integral part of systems biology. Mathematicdl models
have proven to be very useful to explain physical and
biological principles since over two centuries. Nowadays,
models are also widely used to address more specific
questions arising from biological and medical experiments.
The choice of the model type crucially depends on the
question we have about the system. General questions such
as ‘what are the possible reaction mechanisms that result in
a step-like dose-response curve? or ‘what mechanism can
explain hysteresis?® can be approached by mathematical
models that one can solve on paper [1, 2]. However, to
model specific systems in a quantitative manner, we need to
- confront our understanding of complex reaction networks
with experimental data at hand and to use computationally
more demanding approaches, like systems of differential
equations. When model development is driven by
experimental data, the focus is not only on qualitative types
of behaviour but rather on quantitative predictions.

Despite enormous efforts in experimental research in
cellular and molecular biology, there is still a substantial
uncertainty in the qualitative and quantitative aspects of
biochemical  networks,  including  protein—protein
interactions, transcription and translation as well as
metabolic fluxes or metabolite concentrations. To model
nonlinear dynamic processes in cells, one needs quantitative
time-resolved data. Often, only the presence of a gene,
mRNA or a protein has been demonstrated while their
concentration can only be roughly estimated, and even this

holds only for a limited number of compounds. Moreover,
data produced by measurements may not be appropriate for
the computational approaches. For example, quantities are
measured in witro instead of inm wvivo — which makes
conclusions about the living system questionable — or in
cell populations instead of single cells, which obscures cell-
to-cell variability.

When constructing a biochemical model, a number of
choices have to be made: we have to choose an appropriate
model structure based on hypothesised interactions of
biochemical components, and for the reactions, we have to
choose kinetic rate laws and the corresponding enzymatic
parameters. At this stage, the true wiring scheme and the
true parameters are uncertain. These uncertainties need to
be resolved by confronting model alternatives with
experimental data. Even after considering the data, some of
the uncertainty will remain, but this uncertainty can in turn
be quantified: uncertainty in parameters can be described
by confidence intervals or posterior probability densities,
whereas uncertainty in structures can be described by
probabilities or rankings of models.

However, network structure, kinetic laws and kinetic
parameters cannot be determined independently. On the
one hand, we need to specify model structure and kinetics
in advance to determine kinetic constants; on the other, to
choose between model structures, we need to judge their
quality, for instance, by their ability to reproduce given
data. Hence, the uncertainties on different levels are nested
and have to be resolved by a combination — or rather,
iteration — of model selection and parameter fitting.
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In the following, we review some issues arising from
uncertainties concerning kinetic constants, kinetic laws and
network structure. We sketch problems, solutions and
future directions for dealing with them and present
workflows that handle uncertainties in a consistent and
rational manner.

2 Parameter uncertainty

Let us first assume that the structure and kinetic laws of a
biochemical network are known and just the parameter
values 6 need to be determined. Available parameter values
may be uncertain because of experimental errors or
biological variability or because they were measured in
vifro. For other parameters, we may only have rough
guesses about the order of magnitude or no information at
all. A second source of information is dynamical data: if a
model successfully describes, for instance, concentration
time courses, the parameter values used will seem more
plausible. In parameter estimation, we intend to determine
the most plausible parameter values given all the available
information and to assess the remaining uncertainty about
them. Some methods will yield, as a result, confidence
intervals or probability distributions for the parameters.
This information can later be used to assess the range of
model predictions via Monte Carlo sampling.

2.1 Maximum likelihood estimation.

If parameter values are completely unknown in advance, a
standard method to determine them is to fit the model to
sets of experimental data y. Such a parameter estimation is
usually based on the principle to maximise the likelihood

L(y, 6) = P(y|6))

defined as the probability to observe the data y from model ya
with parameter vector 0. We shall not explicitly mention the
model subscript f henceforth. Under the assumption of
independent standard Gaussian measurement errors,
maximising: the likelihood is equivalent to minimising the
sum of squared residuals (SSR), that is, the squares of
the distance between experimental data points and the
respective results of the model simulation. With given data
¥, the SSR is a function of the parameter vector and the
estimation task boils down to finding the minima of this
function.

The main problems in parameter optimisation are (i) the
nonlinear nature of ODEs, causing numerical instabilities
in the calculations, (i) the high dimensionality of the
parameter space, possibly leading to many local minima
and (iii) the notorious disproportion between a small
number of data points and a large number of parameters,
which will result in overfitting. In summary, we face a
number of risks including not to sample the parameter
space appropriately, to be stuck in a local minimum, to find
a global minimum that is still different from the biological
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reality or to proceed too slowly in approaching the
minimum. If we need to rule out suboptimal local minima,
we cannot use local gradient-based methods, but must use
global, computationally demanding methods. An overview
of the most popular parameter estimation algorithms in
biology and biochemistry is given in [3]. A number of
algorithms are implemented in the tools of systems biology
such as Copasi [4], SBML-PET [5] or SBToolBox [6].

2.2 Bayesian parameter estimation

If prior information about the model parameters is available
(e.g. ranges or probability distributions for kinetic
constants), it should be taken into account in the parameter
estimation. Bayesian parameter estimation methods [7] can
determine a compromise between such prior knowledge
and the information obtained from the likelihood function.
The result is a posterior probability distribution over the
parameter sets: a high probability shows that a certain
parameter set seems plausible in the light of all the
information considered.

Formally, model parameters 6 and experimental data y are
described by a joint probability distribution P(y, 0).
Information about the parameter values has to be specified
in the form of the prior distribution P(6), the marginal
distribution of the parameters. By combining the prior with
the likelihood function P(y]6), one obtains the posterior
probability distribution P(8ly) of the parameter values
given in the data. According to Bayes’ theorem, it can be
computed by P(6ly) = P(y|6) - P(6)/P( y) where the
marginal distribution P(y) of the data only appears as a
normalisation constant.

In simple cases (e.g. linear models and Gaussian
distributions), the posterior can be computed analytically. If
this is not possible, it can be characterised by sampling
methods like Monte Carlo Markov chains [7] or
approximated, for instance, by a Gaussian distribution [8].
A Gaussian posterior maximum represents a most plausible
parameter set (the centre of the Gaussian) together with
the remaining uncertainties (given by the covariance
matrix). This information can be used as a starting point
for further modelling. Bayesian methods in bioinformatics
and computational systems biology have been reviewed

recently [9].

2.3 Estimation of kinetic constants based
on heterogeneous and uncertain data

Many kinetic parameters have been published in the
literature, but they cannot be directly inserted into models:
parameters measured 7z witro or under different conditions
may be unreliable or incompatible with each other [10]. To
obtain a consistent, complete set of kinetic parameters, we
need to guess the uncertainties of known values, make
reasonable assumptions about unknown values, and find a
‘balanced’ parameter set that appears most plausible in the
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light of all the parameter values collected. Bayesian statistics
provides a rational method to do that.

2.3.1 Parameter balancing: Statistical distributions
can be used not only to describe actual parameter variability
(e.g. protein expression) within cell populations, but also
our ignorance or beliefs about parameter values. In
Bayesian parameter balancing, measured parameter values
are treated as data y and each kinetic parameter has a prior
distribution that expresses our general beliefs. The
empirical distribution of all known Ky values, for instance,
may serve as a prior for an unknown Ky value [11].
Eventually, we obtain a posterior distribution that describes
the remaining uncertainty owing to missing knowledge,
measurement uncertainties or biological variability. The
resulting posterior distribution can be used to sample
parameter sets for Monte Carlo simulations, which in turn
give us probabilistic statements about the dynamic
behaviour of the model (analytic results within a linear
approximation are described in [12]).

If we intend to describe kinetic parameters by probability
distributions, a problem remains to be solved:
thermodynamic laws may lead to dependencies among the
parameters in a network and, hence, drawing parameters
independently from a statistical distribution would almost
certainly lead to thermodynamically wrong models. Thus,
we need to construct a parameter distribution that satisfies
the thermodynamic constraints. The key idea is to choose a
different parametrisation of the model, in which any
combination of parameter values is feasible: several
approaches have been developed for this purpose [8, 13,
14]. As an example, we shall discuss here parameter
balancing for the convenience kinetics [8].

2.3.2 Convenience kinetics: The convenience kinetics
[8] is a generalised form of the Michaelis—Menten kinetics
for arbitrary numbers of substrates and products (Fig. 1). It
allows for describing enzyme saturation, inhibition and
activation and can be used to model enzymes with an
unknown kinetic law. For a two-substrate/one-product
reaction A + B < C with an activator X and an inhibitor
Y (concentrations 4, 4, ¢, x, y), the reaction rate reads

1 ki ab—k_ ¢
1+%14+5 1+21+D)+ 1+ -1
D

va, b, c,%,y) =E

where E denotes the enzyme concentration and @ = /&y,
b=0bkg, ¢ =cf/hc, x =x/ky and y = y/ky denote scaled
metabolite concentrations. Each metabolite concentration is
scaled by its corresponding enzyme parameter, in this case
reactant constants (corresponding to Michaelis constants)
ka, kg and k¢, the activation constant £x and inhibition
constant 4y. In addition, there are the two turnover rates
ky and %_ for the forward and backward reactions,
respectively.
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Figure 1 Convenience kinetics

Left: scheme of the example reaction (see text)

Right: enzymatic mechanism

Binding of the substrates (A, B) and the product (C} to the enzyme
(grey oval) is assumed to be fast, reversible, non-cooperative and
in random order

Activation and inhibition effects are not shown here

For details see [8]

2.3.3 Thermodynamically correct parameters and
parameter balancing: 1f chemical reactions form a
reaction network, the kinetic constants of different
reactions are constrained by thermodynamic laws. To yield
a zero reaction rate at thermal equilibrium, the parameters
have to satisfy the Haldane relation

_ke k¢
T 0 ks

2)

where the equilibrium constant 4.4 = ¢/(a- 4) denotes the
concentration ratio in thermodynamic equilibrium. For
thermodynamic reasons, the equilibrium constant is
determined by the Gibbs free energies of formation of the
reactants via

[Gg» + G1(30) _ Gg»]
RT

3)

In keq =

where R is Boltzmann’s gas constant and 7'is the temperature
in Kelvin.

Equations (2) and (3) together lead to — possibly
complicated — constraints between the parameters [8]. This
problem ~ which would also arise with reversible mass-
action or Michaelis—Menten kinetics — can be solved by
introducing a new parametrisation. By rewriting (2) as

lnk+—lnk_=Inkeq+1nkA+lnkB—lnkC (4)
and inserting (3), we obtain

0 0 0
(69 + 69 - 6]

Ink, —Ink = RT

+1In4y +1In kg —1In 4

If we introduce a new parameter (‘velocity constant”)

Inkg=={lnk +1nk_
HUYS

we can express the turnover rates £, and £ by the remaining
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parameters
In ki =In 'éR
[0+ 69— 62
ii RT +1In 4y +1n kg —1In -

With such equations for the turnover rates, an entire network
model can be parametrised in a thermodynamically correct
manner: the reactant constants (%44 etc.), Gibbs free
energies of formation (GY etc.) and velocity constants (4g)
are regarded as model parameters, which are
thermodynamically unconstrained and for which probability
distributions can be specified. The turnover rates In., on
the other hand, are computed from the model parameters.
For an entire model, we collect the independent parameters
(in logarithmic form as above) in a vector @ and all kinetic
parameters (including the dependent ones, also in
logarithmic form) in a vector x. Both vectors are then
related by the linear equation

x = R%0 (5)

where the matrix Ry can be easily derived from the network
structure [8].

The issue of thermodynamic correctness arises from the
numerator of the kinetic term in (1) and does not regard the
activation and inhibition parameters. The re-parametrisation
also works for other kinetics in which the Haldane relation
has a multiplicative form like (2), in particular mass-action
kinetics, Michaelis—Menten kinetics and variants with
different activation or inhibition mechanisms.

All kinetic constants in the convenience kinetics can be
measured, but for a given network of interest, only some of
their values may be known and the remaining ones may be
uncertain. In Bayesian parameter balancing, we can use
these values as clues to determine a set of ‘balanced’ system
parameters, which is complete and thermodynamically
correct. If some or all kinetic constants for a model have
been measured (experimental data in a vector y
corresponding to the model values x), then solving the
linear relation y >~ R0 corresponding to (5) would be a
simple way to compute the parameter vector 6. If enough
data are available, it can be solved in the sense of least
squares. A more general and statistically justified way to
determine @ is by Bayesian parameter estimation [15] as
described in Section 2.2, using a prior distribution for 6.

2.3.4 Prior distributions for kinetic parameters:
Bayesian parameter estimation relies on an appropriate
choice of the prior distributions. In parameter balancing,
for instance, the prior is especially important for those
parameters in the vector @ for which no data are available.
To specify a prior, we need to specify both the

mathematical form (e.g. log-normal distribution) and the
hyperparameters (e.g. mean values and covariances) that
determine its exact size and shape. Gaussian distributions
for logarithmic kinetic parameters are biologically plausible
and together with a linear relation like (5) lead to a simple
Gaussian posterior.

To determine the prior mean and width for a certain
parameter type, say Kp values, one could fit a Gaussian
distribution to the empirical distribution of all logarithmic
Ky values available in databases like Brenda [16]. More
accurate priors can be derived for individual Kj; values
based on an analysis of variance with the enzyme and the
organism as factors [11]. We applied this analysis to logjo
Ky values from the enzyme database Brenda and assessed
the quality of predictions with leave-one-out cross-
validation. The quality of predictions depended on the
studied substrate. The overall correlation coefficient
between measured and predicted logig Ky was 0.77. The
resulting predictions and error ranges for enzyme
parameters can be used for defining individual priors for
&M values in convenience kinetics [11].

2.3.5 Workflow for building kinetic models: We
have assembled the methods and protocols into a modelling
workflow [17] that facilitates the integration of biochemical

data and the modelling of metabolic networks from scratch
(Fig. 2).

In brief, it translates a given metabolic network structure
into a draft version of a kinetic model with convenience
kinetics; known kinetic laws [18] can also be inserted into
the models. Such an automatic workflow cannot replace
manual kinetic modelling, but it can ease it: effectively, the
workflow provides modellers with a simple way to query
several enzyme databases in the context of a specific model.
The result is a posterior parameter distribution that can be
used to define parameter ranges for further manual
modelling, and it can be directly used as a parameter prior
for model fitting. The variances of model parameters show
where information is missing and can point at additional
measurements that would provide the most valuable
information.

3  Uncertainty about kinetic rate
laws and network structure

Although parameter estimation is a demanding issue in itself,
the main challenge in modelling is often to determine the
structure of the network, in terms of choosing appropriate
rate laws, that is, kinetics, as well as the wiring scheme
itself. Metabolic networks are to a large extent specified by
a list of enzymes, which can be obtained from genome
sequencing, sequence comparison, traditional biochemical
protein characterisation and function identification. Still,
there is some uncertainty, since not all enzymes are
identified and the role of isoenzymes is not always clear.
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Figure 2 Workflow for translating a metabolic network into
a dynamic model

(1) Thermodynamic and kinetic parameters are collected from
literature and databases

(2) Statistical learning methods [11] yield prior distributions for
types of parameters and for individual parameter values

(3) A biochemical network of interest {in SBML format) is
constructed from a list of KEGG reaction identifiers

Relevant experimental parameter values for the network are
retrieved (4), balanced (5) and inserted into the model (6)

The resulting SBML model contains convenience kinetics with the
balanced parameters

This is also documented by the regular updates of large-scale
stoichiometric metabolic models {19, 20].

Signalling pathways and regulatory networks are usually
less well defined. First, it is often not clear if all relevant
compounds have been identified. Even then, the precise
order of interaction and modification events within the
pathway is often not known. For example, although MAP
kinase cascades have been studied intensively, it is often not
clear if the multiple phosphorylation observed at various
levels occurs upon a single or successive binding events of
the upstream kinase. Moreover, even if the substrates,
modifiers and products of a reaction are known, the exact
kinetic law usually remains elusive.

In computational modelling of biochemical networks, we
can use different strategies to cope with the uncertain
network structure. First, one may include all possible
reactions related to the set of proteins in the network. An
example is the pheromone pathway model of [21]. Since

www.ietdl.org

the precise binding order of the MAP kinases Stellp,
Ste7p and Fus3p to the scaffold protein Ste5p is not
known and the order of phosphorylation events is not
resolved, all potential combinations of binding and
phosphorylation sequences have been considered in the
model. Obviously, this approach can lead to an enormous
number of models that are all compatible with the existing
knowledge. Another possible choice is to include exactly
those compounds into the model for which quantitative
data are available, and to describe their connections with
‘black box’ functions instead of the traditional biochemical
reaction kinetics. For yeast MAP kinase cascades, this
approach would basically reduce the number of model
compounds to two: the added stimulus and the activated
MAP kinase. All other players are currently hardly
accessible. Finally, one may choose a compromise and
describe the network on an intermediate level of granularity
based on the available information and on intuition [22,
23]. A model of this type represents the compounds or
processes that are considered important or relevant; in a
way, it summarises the literature and expert knowledge
(and convention) and employs it to answer specific
questions, for instance, to predict the behaviour of a
compound that is experimentally not accessible.

3.1 Automatic construction of candidate
models

There are several practical issues related to the modelling of
uncertainty of network structures. Possible combinations of
uncertain structures and kinetics directly “translate into
alternative mathematical models. Generating and handling
such alternative models poses a considerable challenge to
the modeller for several reasons. First, each model has to be
implemented, simulated and analysed separately. Often,
model alternatives vary only slightly in structure and/or
kinetics. This may seduce the modeller to copy-paste the
original model and then introduce the modifications by
hand. This is an error-prone process. Secondly, changes
that affect the whole family of models have to be updated
in each model separately, which is also an error-prone and
tedious task, especially when the number of models is high.
The combinatorial complexity often renders it impossible
to implement and handle each model individually. Several
formalisms and tools were developed to address these
problems. We can roughly distinguish between two groups:
some of them help to automatically generate models and
others handle the combinatorial complexity.

As examples for the first group, the tools Cellerator [24]
and MMT?2 [25] can be mentioned. Cellerator is a
Mathematica® package designed to facilitate biological
modelling via automated equation generation. Reactions are
specified by an arrow-based reaction notation from which a
single model is created. MMT2 is a software tool that
produces all possible network wvariants of metabolic
networks by switching reactions off and on. Subsequently,

IET Syst. Biol., 2009, Vol. 3, Iss. 1, pp. 1-9
doi:10.1049/iet-syb:20070042

5

© The Institution of Engineering and Technology 2009



www.ietdl.org

unrealistic models are sorted out by analysis of extreme
pathways and elementary flux modes.

As examples for the second group, BioNetGen [26] and
Moleculizer [27] can be mentioned. BioNetGen is a
language that focuses on protein—protein interactions. The
user can specify rules from which one single model is
created automatically. BioNetGen is designed to handle the
combinatorial complexity of protein complex formation
with modifications, for example, a receptor with =z
phosphorylation sites can occupy 2” different states; if it
dimerises 27, different states are allowed and so on.
Moleculizer is a stochastic simulator for intracellular
biochemical systems, with special treatment for protein
complexes. It resembles BioNetGen but avoids using the
network of all possible complexes and reactions, based on
their probability of occurrence. Only one single model is
generated and simulated.

These state-of-the-art approaches have a major
shortcoming: even though most tools aim at handling
combinatorial complexity, they produce only one model at
the end, which includes all or a reduced number of possible
molecular interactions generated from certain rules.
Currently, there is no tool that automatically implements
and manages different models, which differ in the number
of components, reactions and kinetics. However, this is
what modellers in systems biology are confronted with.
MMT?2 aims into that direction but it falls short in the
ability to actually control the kind of generated models,
because it does not allow for alternatively removing
components or employing alternative kinetics.

In our daily work and discussions with the community, we
see that it is not so much the combinatorial complexity that
creates problems for the modellers but rather its
management and handling of a specific set of candidate
models. Often, modellers have a very clear idea what
different versions of a model they want to implement,

simulate and fit to data. It is just tedious and error-prone
to it all by hand.

Another hotly debated issue is model documentation [28,
29]. It is not only the successful models that are of interest to
the research community, but also those that failed. Usually, in
the course of a modelling project, many unsuccessful model
versions are tested but only the successful one is finally
published. The unsuccessful versions, even though of
interest, are never documented, because this is also a
laborious task but not rewarded. Finally, having several
model alternatives at hand, it is again painful to simulate
each one individually and to compare the results to select
and refine the best ones.

To handle uncertainty in kinetics and model structure, we
developed a tool that automatically generates candidate
models based on a root or master model and specified

modifications and directives (36) (http://modelMaGe.org).

The generated models are automatically documented such
that it is always comprehensible how they were derived from
the master model, thereby keeping track of model versions
and alternatives. This facilitates that common parameters,
modifications or directives are changed in only one place and
automatically updated in each model, which removes the
errors introduced by modifying each model individually.
Finally, all generated models are simulated, fitted to data and
compared automatically. At the end, the user is provided with
a ranking of the model fits and statistical measures that
enables him to discriminate between model alternatives.

3.2 Model selection and nested
uncertainty

To cope with the uncertainty in structure or kinetic laws, one
may either choose the most plausible or most interesting
network structure or one may fit all model alternatives,
including alternative structures and kinetics, to the available
experimental data. There exist a number of criteria to
discriminate or select among alternative fitted candidate
models. For nested models, that is where a model is a
restricted version of the other one, statistical measures like
an F-test or likelihood-ratio test can be used. Nested and
non-nested models can be ranked according to the Akaike
information criterion (AIC) [30, 31], the minimum
description length (MDL) [32] or others criteria that are
based on information theory. The model with the lowest
AIC or MDL is selected (for a review on model selection
see [33]).

Alternative model structures can be generated from a
master model, which includes all possible components and
reactions, by leaving out sets of specified components and/
or reactions. In this way, an acyclic graph of models is
created, which are partly nested within each other. From
these alternative model structures, alternative kinetic
variants are derived, which in turn can be nested within
each other. These model alternatives are eventually fitted to
data. Fig. 3 shows a graph of models that have been
generated from a master model Mj. Leaving out
component A or C or both generates different models.
Each structural alternative has two kinetic alternatives,
indicated by 4; and 4,, where £; is assumed to be nested in
k1. When each model is fitted to data, a simple heuristic of
traversing the graph and comparing models by, for
example, their likelihood ratio for nested models and by the
AIC for non-nested models eventually yields one final model.

If the precise structure of the model network cannot be
defined on the basis of established knowledge but needs to
be determined through the model selection processes, we
must be aware that parameters for different networks have
different meanings. For example, if a double
phosphorylation in a MAP kinase cascade is described with
either one or two individual reactions, then the kinetic
constants of both scenarios have different meanings and
may have different units too.
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Figure 3 An acyclic graph of models that are generated
from a master model M,
Models are generated by leaving out component A or C or both

Each structural alternative has two kinetic alternatives, indicated
by k;, and k,

Of course, none of these measures is made to evaluate how
good a model in fact describes the essence of a biological
process or a biological experiment. The value of a
quantitative model is indicated by how good it can predict
experimental results that have not been used to construct
the model. Those tests include simulation and
measurement of the effect of mutants, be it gene deletion,
loss or gain of function mutants or gene over-expression.
This statement again relates to the problem of model
structure and parameter value estimation: if knowledge
about a mutant has been used to define the network
structure, then correct prediction of the mutant behaviour
is a necessary condition to accept the model, not a new
prediction. Another useful test is the prediction of the
effect of different external stimuli [34].

Thus, model selection or system identification should be in
fact an iterative procedure of repeated cycles of producing
candidate models, parameter fitting and predictions [35].

4 Discussion

Building of dynamical cell models is hampered by difficulties
on various levels: despite strong efforts in high-throughput
and high-quality data generation, we still face a lack of
good quantitative time-resolved data and derived kinetic

www.ietdl.org

parameters. In principle, parameters can also be estimated
from model fitting, but parameter estimation methods are
often not powerful enough to cope with large nonlinear
differential equation systems and sparse data. Finally, we
have to manage the nested uncertainties in model structure,
rate laws and parameter values. Although the systems
biology community is developing methods and tools to
handle these issues, they are still largely unresolved and

need further efforts.

Here, we have discussed practical and theoretical issues
related to the construction of biochemical models. To
integrate diverse data into models with given network
structure, one may explicitly consider parameter
distributions instead of fixed parameter values. After
collecting original data about kinetic constants, Bayesian
balancing allows to combine them with relatively loose
prior assumptions. The result is a kinetic model with the
convenience rate law and balanced, consistent parameters.
The parameter posterior can also be used as a prior for
further rounds of Bayesian estimation in which dynamic
quantities — such as measured metabolite concentrations
and fluxes — are integrated.

Statistical and information theory provides some
theoretical approaches to discriminate between rival model
formulations, concerning both structure and kinetics.
Generally, we gain more confidence in our understanding
of biological processes by iteratively constructing model
variants, estimating parameters and predicting independent
experiments. However, we still see a lack of practical tools
that facilitate management and handling of alternative
model formulations.

Dynamic modelling of cellular networks often has to cope
with data of poor quality, such as missing or contradictory
parameters, data obtained from different experiments or in
vitro data. Even the best modelling workflow and model
management tool cannot construct a reliable model from
poor data.

We expect that larger amounts of specific, high-quality,
quantitative, time-resolved, single-cell data will be available
in the near future. This will help us to understand the
organisation and regulatory principles of metabolic or
signalling pathways and will enable us to derive useful
predictions from the models.
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