CONSTRAINT-BASED MODELS

Outline

- Stoichiometric network reconstruction
- Flux-balance analysis
- Optimization using Linear Programming

Stoichiometric network reconstruction

Metabolic network are not simple graphs

simple directed graph $A \xrightarrow{R_1} B \xrightarrow{R_2} C \xrightarrow{R_3} E \xrightarrow{R_4} E \xrightarrow{R_4} D \xrightarrow{R_5} E \xrightarrow{R_6} F$ metabolic graph

- Two types of entities (metabolites, enzymes)
- Possible representations:
 - <u>hypergraph</u> enzymes are hyper-edges (not always 1:1)
 - bipartite graph enzymes are "special" nodes
- Stoichiometry (encoded as weights in a bipartite graph)

Measuring distance in a metabolic network

• Standard* definition of distance in a bipartite graph

* Ignore currency metabolites: H2O, H⁺, CO₂, P_i, PP_i, NH₄⁺, ATP, ADP, AMP, NAD(P)(H)

Higher level of detail: atom-mapping

Schryer, David W., et al. "Bidirectionality and compartmentation of metabolic fluxes are revealed in the dynamics of isotopomer networks." International journal of molecular sciences 10.4 (2009): 1697-1718.

Metabolic networks: from small scale to genome scale

toy model

hexose transport model

core metabolism model ⁷

Genome scale model (E. coli)

Model	Year	Reactions	Metabolites
iJE660	2000	627	438
iJR904	2003	931	625
iAF1260	2007	1260	1039
iJO1366	2011	2077	1136
core model	2007	95	72

http://systemsbiology.ucsd.edu/InSilicoOrganisms/Ecoli/EcoliSBML

Realistic example: erythrocyte metabolism

reactions

		1	2	3	4	5	6	1	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	2/	28	29	30
		Glet	¥	GPI	PFK	ALD	TPI	GAPDH	PGK	DPGM	DPGase	PGM	EN	¥	ГОН	(d)HOJ	ATPase	AK	G6PD	6PGD	GSSGR	GSHox	Ш	¥	TK1	TA	PRPPS	TK2	đ	Lact	Pyrt
1	Glcin	1	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	GIc6P	о	1	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	0	0	0	0	0	0	0	0	0	0	0	0
3	Fru6P	0	0	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0
4	Fru16P2	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	٥
5	GraP	0	0	0	0	-1	-1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	-1	0	1	0	0	0
6	DHAP	0	0	0	0	-1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	13P2Gri	0	0	0	0	0	0	-1	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	23P2Gri	0	0	0	0	0	0	0	0	1	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	3PGri	0	0	0	0	0	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10	2PGri	0	0	0	0	0	0	0	0	0	0	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11	PEP	0	0	0	0	0	0	0	0	0	0	0	1	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12	ATP	0	-1	0	-1	0	0	0	1	0	0	0	0	1	0	0	-1	1	0	0	0	0	0	0	0	0	-1	0	0	0	0
13	ADP	0	1	0	1	0	0	0	-1	0	0	0	0	-1	0	0	1	-2	0	0	0	0	0	0	0	0	0	0	0	0	0
14	6PGIcA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	-1	0	0	0	0	0	0	0	0	0	0	0
15	NADP	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	-1	-1	1	0	0	0	0	0	0	0	0	0	0
16	GSH	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	-2	0	0	0	0	0	0	0	0	0
17	Rul5P	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	-1	-1	0	0	0	0	0	0	0
18	Xul5P	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	-1	0	0	-1	0	0	0
19	Rib5P	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	-1	0	-1	0	0	0	0
20	Sed7P	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	-1	0	0	0	0	0
21	E4P	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	-1	0	0	0
22	NAD	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
23	Pi	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0
24	Lac	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
25	Pyr	0	0	0	0	0	0	0	0	0	0	0	0	1	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

H.G. Holzhütter (2004)

The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks European Journal of Biochemistry / FEBS, 271(14), 2905–22 doi:10.1111/j.1432-1033.2004.04213.x

Automated genomic reconstructions

www.theseed.org

Goal: Annotating 1000 genomes and reconstructing the metabolic networks

2007

Genome 1 Genome ...X Genome ANNOTATION Similarity Discrete Discrete Context Metabolic Metabolic ANNOTATION + Component Component Existing models SUB-ASSEMBLY Database of Coherent Preliminary Preliminary Reaction Reaction Reaction Subnetworks Subnetwork Subnetwork (Organism-Genes Encoding independent) Enzymes SUB-NETWORK VERIFICATION \ Coherent Coherent Existing Reaction Reaction models Subnetwork Subnetwork EC/Rxn ASSEMBLY associations (e.g. from KEGG) Coherent Reaction Coherent Reaction ASSEMBLY Subnetworks from DB Subnetworks from DB (Organism-specific) (Organism-specific) Preliminary Reaction Network Pathway display reliminary Preliminary Reaction Reaction Gap Network VERIFICATION Network Identification Gap-filling heuristics NETWORK VERIFICATION Complete & Coherent Reaction omplete & Coheren omplete & Coheren Network Reaction Reaction Network Network FBA tools TESTING -DeJongh et al. - TESTING **BMC** Bioinfo Accurate Accurate Accurate Reaction Reaction Reaction Network Network Network

10

Uses for whole-cell stoichiometric models

- Framing a linear problem:
 - Simulating exponential growth by assuming steady-state:
 - i.e. all internal metabolites have a constant concentration
 - External fluxes are measured (or at least bounded)
 - Some reactions are considered to be irreversible
- Together, the flux solution space is constrained enough to answer some questions, e.g.
 - What is the maximal possible growth rate?
 - Which reactions are essential for growth?
 - Which external conditions can support growth (anaerobic, carbon sources, nitrogen sources, etc.)?

Metabolic network representations

$$\frac{dS_1}{dt} = v_1 - v_2 + v_3$$
$$\frac{dS_2}{dt} = v_2 - v_3 - v_4 - v_5$$
$$\frac{dS_3}{dt} = v_5$$

Kinetic model (ODE)

Stoichiometric matrix

Assumption of steady-state

• A kinetic model would have to contain rate laws for each reaction

Assumption of steady-state

- A kinetic model would have to contain rate laws for each reaction
- However, one can also do quite a lot without it:

• First, define the scope: define a stoichiometric network **N**

- First, define the scope: define a stoichiometric network **N**
- Apply a **steady state assumption***, i.e. all internal metabolite concentrations are constant (mass balance)

* In realistic models, **N** has more reactions than metabolites, which means that this system of linear equations is under-determined

$$\frac{dS_1}{dt} = v_1 - v_2 + v_3 = 0$$

$$\frac{dS_2}{dt} = v_2 - v_3 - v_4 - v_5 = 0$$

$$\frac{dS_3}{dt} = v_5 = 0$$

- First, define the scope: define a stoichiometric network **N**
- Apply a **steady state assumption**, i.e. all internal metabolite concentrations are constant (mass balance)
- Add individual constraints* for each reaction flux

* there is still usually a large solution space

- First, define the scope: define a stoichiometric network **N**
- Apply a **steady state assumption**, i.e. all internal metabolite concentrations are constant (mass balance)
- Add individual constraints for each reaction flux
- Maximize an objective function, typically biomass production rate

c·v – a linear combination of biomass precursor synthesis fluxes

$$max c \cdot v$$

$$v$$

$$N \cdot v = 0$$

$$a_i \leq v_i \leq b_i$$

- First, define the scope: define a stoichiometric network **N**
- Apply a **steady state assumption**, i.e. all internal metabolite concentrations are constant (mass balance)
- Add individual constraints for each reaction flux
- Maximize an objective function, typically biomass production rate

$$max_{v} c \cdot v$$

$$v$$

$$N \cdot v = 0$$

$$a_{i} \leq v_{i} \leq b_{i}$$

Solve using linear programming

The conceptual basis of constraint-based models a Genome-scale metabolic reconstruction V3 V3 V3 b Mathematically represent metabolic reactions Constraints Optimization and constraints 1) Sv = 0 maximize Z 2) $a_i < v_i < b_i$ С Mass balance defines a - V1 $\blacktriangleright V_1$ system of linear equations Allowable Unconstrained **Optimal solution** solution space solution space Vo Vo Vo d Define objective function $(Z = C_1^* V_1 + C_2^* V_2 \dots)$ е Calculate fluxes that maximize Z

20

Uses of FBA

- What is the maximal possible yield in different conditions?
- Which media can support growth at all?
- What is the effect of a single gene knockout (for enzymes)?
- Drawing a phenotypic phase plane (PPP)

Additional constraints

- ATP maintenance
- Loopless-COBRA
- Thermodynamic constraints (TMFA)
- FBAwMC (with Molecular Crowding)
- Flux minimization

FBA with Molecular Crowding

- Catalyzing a reaction at a certain rate requires a minimal concentration of enzyme
- Physiological constraints on protein concentrations put an upper bound on the sum of all enzyme concentrations:

Beg, Q. K., Vazquez, A., Ernst, J., de Menezes, M. A., Bar-Joseph, Z., Barabási, A.-L. A.-L., & Oltvai, Z. N. (2007) Intracellular crowding defines the mode and sequence of substrate uptake by Escherichia coli and constrains its metabolic activity PNAS 104(31), 12663–8. doi:10.1073/pnas.0609845104

Principle of Flux Minimization

- Sometimes called parsimonious FBA (pFBA)
- Rather than maximizing the biomass flux, minimize the sum of all fluxes*

* Some people use the sum of squared fluxes minimize $\sum_{v=1}^{r} |v_{j}|^{2}$

H.G. Holzhütter (2004) The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks European Journal of Biochemistry / FEBS, 271(14), 2905–22 doi:10.1111/j.1432-1033.2004.04213.x

Loopless-COBRA and Thermodynamic constrains

- Loopless only avoids futile cycles which are thermodynamically infeasible
- TMFA (Thermodynamic Metabolic Flux Analysis) applies the second law of thermodynamics on all active reactions: $\Delta G < 0$
- Add new variables to represent the metabolite concentrations $ln(x_i)$
- Add constraints, $\Delta G = \Delta G^{\circ} RT \Sigma \ln(x_i) + RT \Sigma \ln(x_j)$
 - where *i* are the substrates and *j* are the products
- Add constraints, for each active reaction, the ΔG must be negative

Alternative optimization goals

- Instead of biomass yield:
 - Minimize glucose uptake rate
 - Maximize ATP production rate
 - Minimal sum of fluxes (I_0 , I_1 or I_2 norms)
- Related to genetic manipulations:
 - MoMA (Minimal Metabolic Adjustment)
 - OptKnock

Alternative optimization goals

both perform best in nutrient-limited continuous cultures

performs best in unlimited aerobic growth on glucose

Max biomass ^b	$\max \frac{v_{biomass}}{v_{glucose}}$	Maximization of biomass yield
Max ATP	$max \; \frac{\nu_{ATP}}{\nu_{glucose}}$	Maximization of ATP yield
$Min \sum v^{2c}$	$\min \sum_{i=1}^n v_i^2$	Minimization of the overall intracellular flux
Max ATP per flux unit ^c	$\max \frac{\frac{\mathbf{v}_{ATP}}{n}}{\sum_{i=1}^{n} \mathbf{v}_i^2}$	Maximization of ATP yield per flux unit
Max biomass per flux unit ^c	$\max \frac{\mathbf{v}_{biomass}}{\sum\limits_{i=1}^{n} \mathbf{v}_i^2}$	Maximization of biomass yield per flux unit
Min glucose	$\min \frac{\nu_{glucose}}{\nu_{biomass}}$	Minimization of glucose consumption
Min reaction steps ^c	$\min \sum_{i=1}^{n} y_i^2, y_i \in \{0, 1\}$	Minimization of reaction steps
Max ATP per reaction step ^c	$\min \frac{\mathbf{v}_{ATP}}{\sum\limits_{i=1}^{n} y_i^2}, y_i \in \{0, 1\}$	Maximization of ATP yield per reaction step
Min redox potential ^{d,e}	$\min \frac{\sum_{n} v_{\text{NADH}}}{v_{\text{glucose}}}$	Minimization of redox potential ^f
Min ATP production ^{d,e}	$\min \frac{\sum_{n} v_{ATP}}{v_{glucose}}$	Minimization of ATP producing fluxes ^g
Max ATP production ^{d,e}	$\max \frac{\sum_{n} v_{ATP}}{v_{glucose}}$	Maximization of ATP producing fluxes ^h

Schuetz, R., Kuepfer, L., & Sauer, U. (2007) Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli Molecular Systems Biology, 3(119), 119 doi:10.1038/msb4100162

Alternative optimization goals

Schuetz, R., Zamboni, N., Zampieri, M., Heinemann, M., & Sauer, U. (2012) Multidimensional Optimality of Microbial Metabolism Science, 336(6081), 601–604 doi:10.1126/science.1216882

MoMA - Minimal Metabolic Adjustment

- <u>Idea</u>: we cannot assume optimality for knockout strains
- <u>Assumption</u>: fluxes in mutants would be closest to original optimum, within the feasible space
- <u>Implementation</u>: minimize the l₂ distance between knockout solution and wild-type optimum

Nature Reviews | Microbiology

What is at the boundary of FBA?

- Metabolism doesn't end in precursor metabolites
- All following processes are "lumped" into one step called the biomass function:
 - transcription
 - translation
 - protein modification / assembly / trafficking
 - DNA replication
 - membrane assembly / division
 - macromolecule degradation
- What can we gain by extending the model to encompass the entire cell?

