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Metabolic networks produce materials and energy for the cell
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Overview

What are metabolic networks and how do they work ?

How can we use models to understand their dynamics ?

How can we predict fluxes in large networks ?

How do metabolic systems respond to perturbations ?

What standards, resources, and software are available  ?



Metabolic networks



Genome-scale network models of E. coli metabolism

http://www.genome.jp/kegg/pathway/map/map01100.html



  Biochemical pathways wall chart

 
Threonine synthesis pathway
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Multi-omics data show metabolism as a dynamic system

Measured uptake rates and concentrations
in B. subtilis central metabolism
after adding malate to a glucose medium.



Kinetic models



How do metabolic networks work?

● What compounds can the cell produce?

● On which nutrient media can the cell  survive?

● What do the metabolic fluxes look like ?

● How do they respond to varying conditions?

● How is all this regulated?

● What conclusions can we draw from limited data?
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Reaction rate (“kinetic equations”)
How often does the reaction occur per time ?

System equations
How do the concentrations change over time?
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ODEs

d[S1]/dt = v1 − v2

d[S2]/dt = v3 − v4
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Michaelis-Menten kinetics (simple enzymatic law)

Mass-action kinetics (non-enzymatic reactions)

The big problem in kinetic modelling: each enzyme is different !!



 Haldane relation

Michaelis-Menten kinetics (simple enzymatic law)

Chemical equilibrium

Mass-action kinetics (non-enzymatic reactions)

The big problem in kinetic modelling: each enzyme is different !!

Thermodynamics helps to reduce unknown parameters



Constraint-based models predict metabolic fluxes in large networks

Stationary (=steady) state
A state in which all variables remain constant in time

Stationarity condition in kinetic models

Condition on the flux vector
Kinetic rate laws do not play a role!

Intracellular metabolites (dynamic)
Concentration changes due to chemical reactions

External metabolites (e.g. extracellular or buffered)
Treated as fixed parameters



Constraint-based models predict metabolic fluxes in large networks

Stationary (=steady) state
A state in which all variables remain constant in time

Stationarity condition in kinetic models

Condition on the flux vector
Kinetic rate laws do not play a role!

Intracellular metabolites (dynamic)
Concentration changes due to chemical reactions

External metabolites (e.g. extracellular or buffered)
Treated as fixed parameters

Flux balance analysis 
predicts flux distributions for large networks

Stationarity + Upper and lower bounds on fluxes
→ Convex set in flux space

Linear optimisation (e.g. maximal product yield)
→ Linear programming problem



1. Wegscheider conditions

Equilibrium constants

Mass-action ratios

Reaction affinities

Fluxes have to satisfy thermodynamic constraints



1. Wegscheider conditions

2. Flux directions and affinities (positive entropy production !)

Equilibrium constants

Mass-action ratios

Reaction affinities

Fluxes have to satisfy thermodynamic constraints



  

Parameter change
higher substrate supply?

Metabolic change 
altered concentrations?
redirected fluxes?

Metabolic control analysis traces the global effects of local changes

Response 
coefficients



  

Parameter change
higher substrate supply?

Metabolic change 
altered concentrations?
redirected fluxes?

1. Stationary concentrations s(p)

2. Response coefficients

Metabolic control analysis traces the global effects of local changes

Local cause:
e.g., single enzyme level

Systemic effect:
 flux or concentration

Slope at standard state = 
“response coefficient”

Response 
curve

Response 
coefficients

Solution of 



Summary: Modelling formalisms for biochemical systems
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Summary: Modelling formalisms for biochemical systems
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Constraint-based models
(e.g., flux balance analysis)



Technical  resources for modelling



Model 1

Model 3

Model 2

Model composition

Playing         with biochemical models ?



Model composition

Model merging

Playing         with biochemical models ?

Model 1

Model 3

Model 2



“Most of the published quantitative 
models in biology are lost for the 
community because they are either 
not made available or they are 
insufficiently characterized to allow 
them to be reused.”

Le Novere et al, (2005)

Models should be reusable



Systems Biology Markup Language (SBML)

 



SBML main site http://sbml.org/

<?xml version="1.0" encoding="UTF-8"?>
<sbml xmlns="http://www.sbml.org/sbml/level2/version3" level="2" version="3">
  <model id="model" name="model">
    <listOfCompartments>
      <compartment id="c" name="c" size="1"/>
      <compartment id="ext" name="ext" size="1"/>
    </listOfCompartments>
    <listOfSpecies>
      <species id="C00022_c" name="Pyruvate" compartment="c">  </species>  
       …
       …
       ...
      <reaction id="reaction_8">
        <listOfReactants>
          <speciesReference species="C00022_c" stoichiometry="0.03"/>
          ....
          <speciesReference species="O2_c" stoichiometry="0.01"/>
        </listOfReactants>
        <listOfProducts>
          <speciesReference species="C00008_c" stoichiometry="0.81"/>
           ...
        </listOfProducts>
        <listOfModifiers>
          <modifierSpeciesReference species="enzyme_reaction_8_c"/>
        </listOfModifiers>
      </reaction>
    </listOfReactions>
  </model>
</sbml>

Systems Biology Markup Language (SBML)

One exchange format  -  
about 170 tools that understand each other

 



Systems Biology Graphical Notation (SBGN)

http://sbgn.org/

Process description diagram



Data, modelling software, and models are available on the web

www.sbos.eu

SB.OS – Live DVD with free modelling software

Network reconstructions Databases for biological numbers

Modelling software

Database of curated annotated models
http://biomodels.org/

JWS online: database of curated models
http://jjj.biochem.sun.ac.za/

Model repositories

http://sbml.org/



Advertisement



Thank you !
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