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Abstract. A variety of three-dimensional geometric structures can be formed by
regular triangles that are flexibly connected along their edges. Polyhedra, chains,
closed rings, and spatial networks can be built by interlinking building blocks
called “corpuscles”, each composed of a small number of triangles. Due to the
flexible edges, some of the resulting structures may show collective movements.
Open-ended corpuscle chains are fully flexible, while most closed structures can
only move if the triangle edge lengths can be slightly deformed. Paper models
indicate that closed, ring-like chains are most flexible if the number of elements
in the ring is a multiple of three. To study this flexibility in detail, we simulate
various corpuscle structures with edges modelled as elastic springs. First, the
structures are relaxed towards conformations of minimal edge tension; then, elas-
tic deformations are studied by inspecting the normal modes of the stress matrix.
The simulations confirm that most of the corpuscle rings can only be closed if
some tension is applied. When the tension is high, some corpuscle elements are
spontaneously punched in and the structure loses its symmetry. In the two struc-
tures that show a strong symmetry breaking, the ring size is a multiple of three,
as suggested by the previous studies of open-ended chains.
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1. Introduction

Regular triangles, connected by common edges, can form a variety of three-dimensional geo-
metric structures. In [2], we have shown how polyhedra, polyhedral rings and networks can be
built from basic elements, called “corpuscles”, each consisting of several triangles in different
arrangements. As their name says, these “little bodies” are building blocks, not autonomous
structures. Figure 1 (a) shows a corpuscle element consisting of ten regular triangles in the
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(a) (b)

Figure 1: Corpuscles and the connection between them. (a) The Goldberg icosa-
hedron [1] can be built by connecting two open corpuscles mouth to mouth. (b)
Top left: corpuscle element in flat conformation, seen from top. Bottom left: to
build chains, one of the existing segments is replaced by a second mouth. Our
short notation for types of corpuscles works as follows: we look from the top,
start at the thick line, and describe the groups of connected segments in clockwise
direction order. In this case, we obtain two segments, a mouth, and two more
segments, or briefly, (2,2). Right: all five corpuscle types with four segments and
two mouths, as well as the branch point type (1,1,1) with three segments and
three mouths. Arrows indicate how corpuscle chains can be extended: corpuscles
are attached to an existing chain with their left mouth (incoming arrow).

following arrangement: five triangles form a pentagonal pyramid, and another such pyramid
is joined to it bottom to bottom. A triangle on top side and its counterpart on the bottom are
called a “segment”. As long as all ten triangles are connected, the overall structure is rigid.
However, if we cut the corpuscle along the edges between two of the segments, the slit creates
an open end (“mouth”). Since the edges between triangles are flexible, the angles between
adjacent triangles can change, and we can deform the entire structure from the original double
pyramid to a double layered, flat hexagon in which one of the triangles is missing.

Single corpuscles can be voluminous or flat and show their characteristics only when they
are part of larger compounds. Since the connecting edges act like hinges, some of the resulting
structures are flexible, showing global conformation changes with little or no distortion of the
triangle edge lengths. Two corpuscle elements, for instance, can be joined through their
mouths. The result is Goldberg’s “Siamese dipyramid” icosahedron [1], which can show
collective movements: if one element has a bold shape (long central axis, narrow mouth), the
other one is flat (short axis, wide mouth). The movement from one position to the other
requires a deformation of the edge lengths, but this deformation is so small that paper models
appear fully flexible.

More complex structures can be built from other types of corpuscle elements [2] as shown
in Figure 1(b). Segments and mouths are always arranged around a central axis. The elements
can be denoted by listing the numbers of neighbouring segments: for example, a (2,2) corpuscle
element contains two pairs of segments, separated by two mouths; a (1,3) element contains
a single segment, a mouth, three segments, and another mouth. Other types of elements are
denoted accordingly. Corpuscles can be connected to build a variety of structures. Several
corpuscles with two mouths can form chains or closed rings, while elements with three or
more mouths can serve as branch points in extended networks [2].
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2. Closed corpuscle structures and their possible deformations

Paper models indicate that open-ended corpuscle chains can be flexibly deformed and that
their deformations are approximately periodic along the chain, with a period around three.
This approximate periodicity has been confirmed by previous calculations [2]. Accordingly,
corpuscle rings made from paper are deformable if the number of elements is a multiple of
three, while other rings are rigid. The 8-ring, for instance, is rigid, while a 12-ring can
be deformed easily, showing a repeated sequence of flat/bold/bold elements. Moreover, the
paper model of a new 6-ring flips spontaneously into a non-symmetric conformation, which
apparently reduces the tension in the material. However, paper models do not directly teach
us which rings can be built from exact regular triangles, how strongly the edges need to
be deformed to close the other rings, and which edges make the structures resist further
deformations.

To study this, we analyse a number of corpuscle structures including rings consisting of 6,
8, 10, 12, and 60 segments and simulate their stable conformations and elastic deformations.
In our numerical model, edges are represented by elastic springs following Hooke’s law. This
type of model is common in molecular dynamics and in the calculation of force-directed graph
layouts [3]. We check how much the edges have to be deformed to obtain the closed structures
and whether the stable conformations, in which the edges show a minimal tension, show a
spontaneous symmetry breaking.

Having computed these stable conformations, we study how strongly they resist further
deformations. Small elastic deformations can be characterised by stress energies, which de-
pend quadratically on node displacements. The eigenvectors of the quadratic form, called
deformation modes, represent natural deformations of the structure, similar to the natural
harmonics of guitar strings. Six of these displacement modes correspond to simple transla-
tions and rotations in space and require no deformation energy. All other modes represent
elastic deformations and are associated with positive energies. The corresponding forces tend
to drive the structure back towards their stable conformation, and if the nodes carry identi-
cal masses, this dynamic will lead to global oscillations of the structure. Modes associated
with large deformation energies (“hard modes”) will show fast oscillations; modes with small
deformation energies (“soft modes”) will show a slower “breathing”.

3. Elastic spring model: stable conformations and deformation
modes

Aside from the structures described in [2], we consider here a 44-hedral cluster, another
cluster of four elements, and new rings composed of 6, 12, or 60 elements. Together with
the Goldberg icosahedron, our list thus comprises corpuscle clusters and rings of 2, 4, 6,
8, 12, 16, and 60 elements, as well as the cube-centric corpuscle ball (20 elements) and
the 44-hedral cluster. All structures are shown in Fig. 2 as paper models and in Fig. 4 as
computer models. Their topologies are listed in Table 1. Most structures can only be closed
if the edges are elastic and can therefore change their length. We have studied this by a
numerical model in which edges are elastic springs following Hooke’s law. Conformations
were scored by energies resulting from stretching and compression of the edges and for each
structure, we computed a conformation of minimal total edge tension (“stable conformation”)
and determined its symmetry. Next, we determined possible low-energy deformations around
this stable conformation from the eigenvectors of the energy function’s Hessian matrix.



80 E. Wohlleben, W. Liebermeister: Deformations in Polyhedral Rings of Corpuscle Elements

Goldberg icosahedron Corpuscle 4-cluster Corpuscle 44-hedron Corpuscle 6-ring

Corpuscle 8-ring Corpuscle 10-ring 2-fold 12-ring 3-fold 12-ring

6-fold 12-ring Corpuscle 60-ring Corpuscle 16-ring Corpuscle ball

Figure 2: Corpuscle structures shown as paper models. For details, see Table 1.

In the calculations, a corpuscle structure was represented by a set of nodes — with indices
α and coordinate vectors (x1α, x2α, x3α)T — and by edges given as ordered pairs of nodes. The
total energy reads

E = 1
2

∑
(α,β)

(Dαβ − Lαβ)2,

where Dαβ is the Euclidean distance between nodes with indices α and β, and Lαβ is the
nominal edge length between them. Usually, we consider a nominal edge length Lαβ = 1.
The sum runs over all pairs (α, β) of nodes joined by an edge and satisfying α < β. To
obtain closed rings, we started from open chains, determined nodes at the open ends to be
matched, and deformed the structures such as to bring these nodes in close vicinity. Then,
we collapsed the matched nodes and further relaxed the structure numerically to obtain a
stable conformation, that is, a local energy minimum. Whenever all edge lengths in this
conformation were equal to 1 within numerical accuracy, we concluded that the structure can
be built exactly without edge deformation.

Next, we studied the soft deformation modes. Based on the stable conformation obtained,
we computed the Hessian matrix of the energy function and determined its eigenvalues and
eigenvectors. For these calculations, we made two alternative assumptions:

(i) all edges have the same nominal length, i.e., they may already be stretched or compressed
in the stable conformation;

(ii) each edge’s nominal length is defined by the length in the stable conformation, i.e.,
different edges have different nominal lengths, and the stable conformation is free of
tension by construction.

The results were similar, but the second alternative excludes negative eigenvalues that could
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Table 1: Corpuscle structures studied (for a detailed description, see the Appendix
and compare Figs. 3 and 4)

Name Elements Nodes Edges Triangles Rotation Mean edge Symmetry Exact
symmetry energy breaking

Goldberg icosahedron 2 12 30 20 2 ≈ 0 ×
Corpuscle 4-cluster 4 18 48 32 2 ≈ 0 ×
44-hedral cluster 6 24 66 44 2, 3 ≈ 0 ×
Corpuscle 6-ring 6 25 72 48 3 ≈ 0 ×
Corpuscle 8-ring 8 32 96 64 4 ≈ 0 ×
Corpuscle 10-ring 10 40 120 80 5 8.5 · 10−5 ×
Corpuscle 12-ring (2×) 12 48 144 96 2 6.4 · 10−5

Corpuscle 12-ring (3×) 12 48 144 96 3 3.9 · 10−5

Corpuscle 12-ring (6×) 12 48 144 96 6 7.6 · 10−8 ×
Corpuscle 60-ring 60 240 720 480 10 3.1 · 10−8

Corpuscle 16-ring 16 56 188 128 2 3.3 · 10−5

Corpuscle ball 20 64 216 144 4 2.4 · 10−5

otherwise be caused by numerical inaccuracies. In the following, we describe the results
obtained from the second alternative. In any case, translation and rotation modes of the entire
structure were energy-neutral and their zero eigenvalues were recovered with good numerical
accuracy. The next smallest eigenvalues are associated with soft elastic deformations.

4. Symmetry and elastic deformations in clusters and rings

Paper models and simulation results for the relaxed conformations are shown in Figs. 2 and
4; details are listed in Table 1. In the table, the first columns summarise the numbers
of elements, nodes, edges, and faces. The first three structures (“clusters”) satisfy Euler’s
formula for convex polyhedra (the numbers of nodes and faces together equals the number
of edges plus 2), while all other structures, due to their differing topologies, have Euler’s
characteristics different from 2. “Rotation symmetry” refers to an idealised geometric shape
of maximal symmetry, which may show unequal edge lengths and be unstable in the elastic
spring model.

The last three columns summarise results about the relaxed state, obtained from the nu-
merical optimisation. Average edge tensions (mean square deviation from the nominal edge
length of 1) were computed after relaxing the structure to a stable conformation (compare
Fig. 3). Values below 10−9 are labelled as “≈ 0”; larger values suggest that the structure can-
not be formed with equal edge lengths. The column “symmetry breaking” indicates whether
the stable conformation breaks the symmetry of the graph (as determined by visual inspec-
tion and by multiplicities of edge lengths). A structure is labelled ”exact” if there exists a
symmetric stable conformation with equal edge lengths (again, within numerical accuracy).
Paper models and simulation results for elastic deformations are shown in Figs. 2 and 4. The
structures’ shapes and behaviours are described in more detail in Appendix A, and movies
showing soft simulated deformation modes can be found at www.korpuskel.de.

To summarise, our computer simulations show that the three clusters (Goldberg icosahe-
dron, 4-cluster, and 44-hedron) can be built exactly with regular edge lengths, while the rings
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(b)

(c)

(d)
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Figure 3: Deformation of corpuscle compounds. The symmetric conformations
are shown on the left, the extreme deformations in the other columns. (a) Paper
model of the Goldberg icosahedron with its two extreme conformations. (b) 6-
ring. (c) 3-fold symmetric 12-ring. (d) 6-fold
symmetric 12-ring. The rings shown in (b)–(d) have three extreme deformations.
For symmetry reasons, these conformations are identical except for rotations of
the structure. (e) Symmetric conformation and the three extreme deformations of
the 2-fold symmetric 12-ring. In one extreme conformation (mid-right), all (2,2)
type elements are flat. The other two extreme conformations (mid-left; right) are
mirror images of each other.

can only be closed by applying some tension — the 8-ring being the only exception. If the
overall tension is high, it will not be distributed evenly over the entire structure, but some
of the corpuscle elements may become flattened or even punched in spontaneously, breaking
the overall symmetry. This happens in the 6-ring, in the 12-ring with 6-fold symmetry, and
in other rings with stronger tension (18-ring and 24-ring) which were not presented here.
Although our selection of corpuscle structures is far from being comprehensive, the results
so far agree with our expectation that flexible movements and deformations are facilitated if
ring sizes are multiples of three.
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(a) Goldberg icosahedron Corpuscle 4-cluster Corpuscle 44-hedron

(b) Corpuscle 6-ring Corpuscle 8-ring Corpuscle 10-ring

(a) Corpuscle 12-ring (2×) Corpuscle 12-ring (3×) Corpuscle 12-ring (6×)

(b) Corpuscle 16-ring Corpuscle 60-ring Corpuscle ball

Figure 4: Edge tensions of corpuscle structures. In the relaxed states shown, edge
lengths deviate from their natural value 1. Edge tensions are shown by colours
(red: compression; blue: extension).
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A. Corpuscle structures studied

Here we summarise our results for the different corpuscle structures. The clusters (first three
structures in Table 1 and Figures 2 and 4) can be built with rigid edges:

• As shown by Goldberg [1], the Goldberg icosahedron has three distinct conformations
in which triangles are exactly regular. A paper model moves continuously and with
little effort between these conformations. This “breathing” movement also shows up as
the softest deformation mode in the calculations.

• The four-corpuscle-cluster consists of four elements, each containing four segments and
one mouth. They are assembled in pairs around a non-regular octahedron just like
the Goldberg icosahedron. According to the simulations, its softest deformation mode
resembles the breathing of the Goldberg icosahedron, with the two halves opening and
closing in opposite phase.

• The 44-hedron contains six corpuscles with three segments and one mouth each. These
“bridge” elements lean over the surface of a core solid, which resembles a regular icosa-
hedron. In fact, it represents one phase of Buckminster Fuller’s Jitterbug [4], a
continuous movement between a regular octahedron, an icosahedron, and a cubocta-
hedron. The softest deformation mode of the 44-hedron consists of an extension along
one of the main axes. Due to its symmetry, this mode can appear in three different
directions.

The remaining structures are rings which all can be closed with no or little distortion. They
show different symmetries, and some of them are slightly deformable.

• The 6-ring emerges from alternating (2,2) and (0,4) elements. The (2,2) elements share
the centre point of the ring as a vertex. In the paper model, the structure is flexible:
its symmetric shape is unstable and flips into a conformation in which one of the (2,2)
element diminishes its volume. So does the (0,4) element on the opposite side, while the
other four elements simultaneously increase their volume. The vertical (2,2) element
keeps some of its volume when the co-acting horizontal (0,4) element is already flat.
This can happen in three different orientations. This behaviour is also reflected in the
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computer model: in the stable conformation, one of the vertical elements is punched
in and completely flat, which decreases the overall tension to a very small value and
breaks the 3-fold rotation symmetry.

• The 8-ring consists of alternating elements of types (1,3) and (3,1) and is the narrowest
ring that can be built from such elements. The empty area in its centre forms a square
antiprism. The 8-ring can be closed without deformation and, as a paper model, is
rigid. The 10-ring consists of alternating elements of type (2,2) and (1,3). Five of its
elements form a central pentagon. Its stable form is under tension and hardly flexible.

Our three 12-rings have the same number of nodes, edges, and triangles, but differ in their
chain sequences and show 2-fold, 3-fold, and 6-fold symmetry, respectively.

• The 3-fold symmetric 12-ring consists of alternating (1,3) and (3,1) elements. The
inmost edges of six elements form a band meandering up and down three times. This
band can be seen as part of a cube in the ring’s empty centre. The structure closes with
little tension and can be easily deformed, moving from the equilibrium conformation
into three extreme conformations. In each of them, two (1,3) and two (3,1) elements
become flat.

• The 6-fold symmetric 12-ring is built from alternating elements of type (2,2) and (1,3)
and surrounds a hexagon. In the paper model, the ring is harder to deform than the
3-fold-symmetric 12-ring. On the way from its symmetric shape to one of the three
extreme positions, four of the elements become flat: two (2,2) elements and two (1,3)
elements. After passing through a conformation of higher tension, the structure reaches
a more relaxed shape. In the calculation, this ring undergoes a spontaneous symmetry
breaking which leads to to the same shape: four segments, in a distance of three segments
each, become almost flat and partially punched in.

• In the 2-fold symmetric 12-ring, four elements of type (2,2) are assembled with four
elements of type (1,3) and four elements of type (3,1). Deforming this ring creates
extreme shapes (see Fig. 4(e)), since the co-acting sets of corpuscles contain elements
of different types. One of the sets consists of four elements of type (2,2), and flattening
these four causes the entire ring to contract. The second set consists of elements of type
(1,3), and the third set of co-acting elements are type (3,1). A flattening of these sets
causes a twist in the ring’s shape.

• The 60-ring is formed by a sequence of (1,3) type and (3,1) type elements which alternate
after each third element. During the relaxation phase, the edge tension becomes very
small. We therefore expect that the 60-ring can be built with edge lengths very close
to the nominal length of 1.

• The 16-ring consists of elements of types (1,3) and (3,1). It extends around a central
empty cube, touching eight of the cube’s edges and covering all its vertices. By adding
four corpuscle elements as “bridges”, it can be turned into a cube-centric corpuscle ball
with cubic symmetry [2]. Both structures are hardly flexible.
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