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ABSTRACT: Corpuscles are compact geometric structures formed by regular triangles with edges 
functioning like hinges. They can be connected to form chains, closed rings, and spatial networks. 
Some of the compound structures are flexible. Their geometric shape can be varied continuously 
and movements of a single element lead to collective conformation changes along the corpuscle 
chain. In many cases, however, this requires a slight deformation of the edge lengths. Open-ended 
corpuscle  chains  can  be  fully  flexible  and  the  element  conformations  repeat  each  other 
approximately after three units.  We also observed that ring-like chains made from paper can be 
deformed more easily if the number of ring elements is a multiple  of three. To investigate this 
further,  we  consider  a  number  of  corpuscle  structures  and  simulate  their  deformations  by  a 
numerical  model.  Edges  are  modeled  as  elastic  springs  and the  structures  are  relaxed  towards 
conformations of minimal energy. We find that most of the corpuscle rings can only be closed if 
some tension is applied. Moreover, the computer experiments suggest that if this tension is high, 
some of the elements will spontaneously be punched in and the structure will lose its symmetry. In 
both of the striking examples we found, the ring size was in fact a multiple of three.
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1. INTRODUCTION
Corpuscles  are  flexible  geometric  structures 
formed by regular triangles.  Like in a paper 
model, the edges function as hinges. Some of 
the  adjacent  triangles  are  not  joined  by  an 
edge, but by a slit,  which creates open ends 
(“mouths”)  at  which  two  corpuscles  can  be 
joined.  A  simple  example  is  Goldberg's 
“Siamese dipyramid” icosahedron [1],  which 
consists of two elements, each containing five 
triangle  segments  and  one  mouth.  When 
joined,  the  two elements  still  show coupled 
movements: if one element has a thick shape 
(long central  axis,  narrow mouth),  the other 
one is flat (short axis, wide mouth). 
Several corpuscles with two mouths can form 
straight or curved chains, while elements with 

three  mouths  can  serve  as  branch  points  in 
extended  networks.  Some  of  the  chains  are 
strongly  curved  and  can  be  closed  to  form 
rings  [2].  Paper  models,  which  are  slightly 
deformable,  indicate  that  the  chain 
deformations are approximately periodic with 
a  period  of  three  and that  rings  made  from 
multiples of three elements can be deformed, 
while other rings tend to be stabilized. The 8-
ring,  for  instance,  is  rigid,  while  the  elastic 
12-ring  can  be  deformed  easily,  showing  a 
repeated sequence of flat/bold/bold elements. 
Moreover, a paper model of a new 6-ring flips 
spontaneously  into  a  non-symmetric 
conformation,  which  apparently  reduces  the 
tension in the material. However, it is hard to 
tell from paper models alone how much edge 



deformation is needed to obtain a closed ring 
or  to  deform  it.  Previous  calculations  have 
confirmed  that  open-ended chains  can show 
flexible  collective  deformations,  which  are 
approximately periodic with a period of about 
three [2]. But it  is still  unclear which of the 
corpuscle structures can be build exactly (that 
is,  without  deforming the  edges)  and  which 
would be the preferred conformations for the 
others. To test this, we now studied corpuscle 
structures  of  different  size,  including  rings 
consisting of 6, 8, 10, 12, and 60 segments, 
and  simulated  their  stable  conformation  and 
possible deformations by a numerical model. 
In the model,  edges  are  modelled  by elastic 
springs  following  Hooke's  law.  We  studied 
how much the edge have to be deformed to 
build  these  structures,  whether  their  stable 
conformations show any symmetry breaking, 
and what are their softest deformation modes. 

2. CORPUSCLE STRUCTURES
Corpuscles  are  composed  of  segments (two 
triangle  faces  connected  by a  flexible  edge) 
and mouths (segments in which the faces have 
been omitted and where the mouth of another 
corpuscle element fits in), all arranged around 
a  central  axis  [2].  The  elements  can  be 
denoted by numbers  of connected segments: 
in  a  (2,2)  corpuscle  element,  for  instance, 
there are two pairs of segments, separated by 
two  mouths. A (1,3) element is composed of 
a  single  segment,  a  mouth,  three  segments, 
and another mouth.  Other types of elements 
are  named  accordingly.  Corpuscles  can  be 
connected  to  build  a  variety  of  structures. 
Apart  from  the  ones  presented  in  [2],  we 
consider here a 44-hedral cluster, a cluster of 
four elements, and new rings containing 6, 12, 
or  60 elements.  All  structures  are  shown in 
Figure 1 (as paper models) and in Figures 3a, 
3b,  3c,  and 3d (as  computer  models).  Their 
topologies are listed in Table 1.

3. ELASTIC SPRING MODEL: STABLE 
CONFORMATIONS AND SOFT DEFOR-
MATION MODES
Together with the Goldberg icosahedron, our 
list comprises corpuscle clusters and rings of 
2, 4, 6, 8, 12, 16, and 60 elements, as well as 
the cube-like corpuscle ball (20 elements) and 
a 44-hedral  cluster.  Most  of these structures 
require elastic edges, which can change their 
length. We have studied their  conformations 
by  a  numerical  model  in  which  edges  are 
elastic springs following Hooke’s law.  Each 
conformation is scored by an energy resulting 
from stretching and compression of the edges. 
For  each  structure,  we  have  computed  a 
conformation  of  minimal  energy  (“stable 
conformation”) and determined its symmetry. 
Next,  we  determined  possible  low-energy 
deformations around this stable conformation 
from the eigenvectors of the energy function’s 
Hessian matrix. 
For the calculations,  a corpuscle structure is 
represented by a set of nodes (with indices α 
and coordinate vectors (x1α , x2α , x3α)T) and by 
a  set  of  edges  given  as  ordered  node  pairs. 
The  total  energy reads  E =  1/2  Σ(α,β) (Dαβ – 
Lαβ)2,  where  Dαβ is  the  Euclidean  distance 
between nodes α and β and Lαβ is the nominal 
edge  length  between  them.  Usually,  we 
consider a  standard edge length  Lαβ  =1.  The 
sum runs over all pairs (α, β) of nodes joined 
by an edge and satisfying α < β.
To obtain a closed ring, we start from an open 
chain, determine nodes at the open ends to be 
matched, and deform the structure such as to 
bring these nodes in close vicinity. Then, we 
collapse the matched nodes and numerically 
relax  the structure further  to  obtain a  stable 
conformation,  that  is,  a  local  energy  mini-
mum. If all edge lengths in this conformation 
are equal to 1 within numerical accuracy, the 
structure  can  be  built  exactly  without  edge 
deformation.
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Goldberg icosahedron Corpuscle 4-cluster Corpuscle 44-hedron

Corpuscle 6-ring Corpuscle 8-ring Corpuscle 10-ring

2-fold symmetric 12-ring 3-fold symmetric 12-ring 6-fold symmetric 12-ring

Corpuscle 60-ring Corpuscle 16-ring Corpuscle ball 

Figure 1: Corpuscle structures shown as paper models.  Details on the topologies are listed in 
Table 1.
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Name Elements Nodes Edges Triangles Rotation 
symmetry

Mean edge 
energy

Symmetry 
broken

Exact

Goldberg 
icosahedron

2 12 30 20 2 appr. 0 x

Corpuscle 4-cluster 4 18 48 32 2 appr. 0 x

44-hedral cluster 6 24 66 44 2,3 appr. 0 x

Corpuscle 6-ring 6 25 72 48 3 appr. 0 x

Corpuscle 8-ring 8 32 96 64 4 appr. 0 x

Corpuscle 10-ring 10 40 120 80 5 8.5 * 10-5 x

Corpuscle 
12-ring (2-fold)

12 48 144 96 2 6.4 * 10-5

Corpuscle 
12-ring (3-fold)

12 48 144 96 3 3.9 * 10-5

Corpuscle 
12-ring (6-fold)

12 48 144 96 6 7.6 * 10-8 x

Corpuscle 60-ring 60 240 720 480 10 3.1 * 10-8

Corpuscle 16-ring 16 56 188 128 2 3.3 * 10-5

Corpuscle ball 20 64 216 144 4 2.4 * 10-5

Table 1: Corpuscle structures studied. For the geometric shapes, compare Figures 1 and 3a-d. 
The  first  columns  indicate  the  numbers  of  elements,  nodes,  edges,  and  faces.  The  first  three 
structures (“clusters”) satisfy Euler's formula (#nodes + #faces = #edges + 2) for convex polyhedra, 
while all  others, due to their differing topologies,  have Euler's characteristics different from 2. 
“Rotation symmetry” refers to an idealized geometric shape of maximal symmetry, which may show 
unequal edge lengths and need not represent a stable conformation in the elastic spring model. The 
last three columns summarize results from the numerical calculations. Average edge energies (mean 
square deviation from the nominal edge length of 1) were computed after relaxing the structure to a 
stable  conformation.  Values  below 10-9 are  labeled  as  “appr.  0”;  larger  values  suggest  that  the 
structure cannot be formed with equal edges. Structures are labeled as “broken symmetry” if the 
stable conformation breaks the symmetry of the graph (as determined by visual inspection and by 
multiplicities  of edge lengths).  A structure is  labeled “exact” if  there exists  a symmetric  stable 
conformation with equal edge lengths (again, within numerical accuracy). 
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Next, we studied the soft deformation modes. 
Based  on  the  stable  conformation  obtained, 
we computed the Hessian of the energy and 
determined its  eigenvalues and eigenvectors. 
For  these  calculations,  we  considered  two 
alternative starting points: (i) we assumed that 
all  edges  have  a  nominal  length;  (ii)  we 
assumed  that  each  edge's  nominal  length  is 
the one found in the stable conformation. The 
results were similar, but the second alternative 
excludes,  by construction,  the  possibility  of 
negative  eigenvalues  due  to  numerical 
inaccuracy. In the following, we shall refer to 
the second possibility. In any case, translation 
and rotation of the entire structure are energy-
neutral  and  lead  to  six  zero  eigenvalues, 
which we could recover with good numerical 
accuracy.  The  next  smallest  eigenvalues  are 
associated with soft elastic deformations.

4.  DEFORMATION  AND  SYMMETRY 
OBSERVED IN CLUSTERS AND RINGS
Paper   models  and  simulation  results  are 
shown in Figures 2a-e and 3a-d, respectively. 
The  numerical  results  are  listed  in  the  last 
three columns of Table 1 and soft deformation 
modes  are  shown  at  www.korpuskel.de as 
movies. In this section,  we shall describe the 
structures' behavior in more detail.

4.1  Corpuscle Clusters
The  first  three  structures  (called  “clusters”) 
can be built  with  rigid edges.  As shown by 
Goldberg [1],  the  Goldberg icosahedron has 
three  conformations  in  which  triangles  stay 
regular. A paper  model  moves  continuously 
and  with  little  effort  between  these  confor-
mations.  This  “breathing”  movement  also 
appears as the softest deformation mode in the 
calculations. 
The  four-corpuscle-cluster consists  of  four 
units,  each  with  four  segments  and  one 
mouth. They are assembled in pairs around a 

non-regular  tetrahedron,  just  like  the 
Goldberg  icosahedron.  According  to  the 
simulations, its softest deformation mode also 
resembles  the  breathing  of  the  Goldberg 
icosahedron, with the two halves opening and 
closing in opposite phase. 
The  44-hedron contains  six  corpuscles  with 
three  segments  and  one  mouth  each.  These 
bridges lean over the surface of a core solid, 
which  resembles  a  regular  icosahedron.  In 
fact,  it  represents  one  phase  of  B.  Fuller's 
Jitterbug, a continuous movement between a 
regular  octahedron,  an  icosahedron,  and  a 
cuboctahedron. The softest deformation mode 
of  the  44-hedron  consists  of  an  extension 
along  one  of  the  main  axes.  Due  to  its 
symmetry,  this  mode  can  appear  in  three 
different directions.

4.2  Corpuscle rings
Our present selection focuses on rings that can 
be  closed  with  little  distortion,  show 
symmetry, and are possibly deformable. 
The 6-ring emerges from alternating (2.2) and 
(0,4)  units.  The  (2,2)  units  share  the  center 
point  of  the  ring  as  a  vertex.  In  the  paper 
model, the structure is flexible: its symmetric 
shape seems to  be unstable  and flips  into  a 
conformation  in which one of the (2,2) unit 
diminishes its volume. So does the (0,4) unit 
on  the  opposite  side,  while  the  other  four 
elements  simultaneously  increase  their 
volume. The vertical (2,2) unit keeps some of 
its volume when the co-acting horizontal (0,4) 
unit is already flat. This can happen in three 
different  orientations.  This  behavior  is  also 
reflected in the computer model: in the stable 
conformation, one of the vertical elements is 
punched  in  and  completely  flat,  which 
decreases the overall tension to a very small 
value and obviously breaks the 3-fold rotation 
symmetry. 
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Figure 2a: Deformation of the Goldberg icosahedron paper model.  Shown are the symmetric 
conformation (left) and the two extreme deformations (right). 

Figure 2b: Deformations of the 6-ring paper model. Shown are the symmetric conformation and 
three extreme deformations, which have the same shape and differ only in their orientation.

Figure  2c:  Deformations  of  the  2-fold  symmetric  12-ring  paper  model.  Shown  are  the 
symmetric conformation and the three extreme deformations. There is one outstanding deformed 
conformation (mid-right) in which all (2,2) type units are flat. The other two extreme conformations 
(mid-left; right) are mirror images of each other. 

Figure 2d: Deformations of the 6-fold symmetric 12-ring paper model.  Shown are the three 
extremes  of  deformation  and  the  symmetric  conformation.  The  three  deformations  can  be 
transferred into each other by rotating the model.
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Figure 2e: Deformations of the 3-fold symmetric 12-ring paper model.  Shown are  the three 
extreme deformations and the symmetric conformation (left). Units co-acting in the same set are 
marked by the same color. By switching colors, the three deformations can be transferred into each 
other by rotating the model.

The  8-ring consists  of  alternating  (1,3)  and 
(3,1) type elements and is the narrowest ring 
that can be built from such units. The empty 
area  in  its  center  forms  a  square  antiprism. 
The 8-ring can be closed without deformation 
and shows hardly any flexibility in the paper 
models.  The  10-ring consists  of  alternating 
elements  of type (2,2) and (1,3).  Five of its 
elements  form a central  pentagon.  Its  stable 
form is under tension and hardly flexible.
Our three 12-rings have the same number of 
nodes, edges, and triangles, but differ in their 
chain sequences and show 2-fold, 3-fold, and 
6-fold  symmetry,  respectively.  In  the  2-fold 
symmetric 12-ring, four units of type (2,2) are 
assembled  with  four  units  of  type (1,3)  and 
four units  of type (3,1). Deformation of this 
ring creates  extreme shapes  (see Figure 2c), 
since the co-acting sets of corpuscles do not 
gather units of the same type. One set consists 
of four units of type (2,2), and a flattening of 
this set causes a contraction of the ring's entire 
shape. The second set consist of units of type 
(1,3), and the third set of co-acting subunits 
are type (3,1). A flattening of these sets causes 
a twist in the ring's shape. 
The  3-fold  symmetric  12-ring,  in  contrast, 
assembles (1,3) and (3,1) units in alternating 
order. The inmost edges of six elements form 
a band meandering up and down three times. 
This band can be seen as part of a cube in the 
ring's center space. The structure closes with 

little  tension  and  can  be  easily  deformed, 
moving  from  the  equilibrium  into  three 
extreme conformations. In each of them, two 
(1,3) and two (3,1) units become flat. 
The  6-fold  symmetric  12-ring is  built  from 
alternating  elements  of  type  (2,2)  and  (1,3) 
and surrounds a hexagon. In the paper model, 
the ring is  harder to  deform than the 3-fold 
12-ring. On the way from its symmetric shape 
to one of the three extreme positions, four of 
the elements become flat: two (2,2) units and 
two (1,3) units. After a first strong effort, the 
structure seems to reach a more relaxed shape. 
In  the  calculation,  this  ring  undergoes  a 
spontaneous symmetry breaking that leads to 
to  the  same  shape:  four  segments,  in  a 
distance of three segments each, become very 
thin and partially punched in. 
The 60-ring is formed by a sequence of (1,3) 
type and (3,1) type units alternating after each 
third element. During the relaxation, its edge 
tension  achieves  a  very  small  value.  We 
therefore expect that the 60-ring can be built 
with edge lengths very close to, but not equal 
to one. From the same sequence, we can also 
build  rings  of  other  size,  but  it  takes  much 
more tension to close them. The 18-ring, for 
instance (not presented here), shows a similar 
spontaneous  deformation  as  the  6-fold 
symmetric 12-ring. 
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Goldberg icosahedron Corpuscle 4-cluster Corpuscle 44-hedron

Figure 3a: Corpuscle clusters studied. Details on their topologies are given in Table 1. All edges 
have their natural length.

Corpuscle 6-ring Corpuscle 8-ring Corpuscle 10-ring

Figure 3b: Three of the corpuscle rings studied. Details on their topologies are given in Table 1. 
On bottom, edge tension is marked by colors (red: compression; blue: extension).
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Corpuscle 12-ring (2-fold) Corpuscle 12-ring (3-fold) Corpuscle 12-ring (6-fold)

Figure  3c:  The three  12-rings  studied. Details  on  their  topologies  are  given  in  Table  1.  On 
bottom, edge tension is marked by colors (red: compression; blue: extension).

Corpuscle 60-ring Corpuscle 16-ring Corpuscle ball 

Figure 13: Two rings and the corpuscle ball. Details on their topologies are given in Table 1. On 
bottom, edge tension is marked by colors (red: compression; blue: extension).
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The  16-ring emerges  from elements  of  type 
(1,3) and (3,1), being repeated after the first – 
first – second... element. This ring surrounds a 
cube in its central area, fitting along eight of 
the cube's edges and covering all its vertices. 
By adding four bridges, it can be completed to 
the corpuscle ball, which has cubic symmetry 
[2].  Both  structures  show  hardly  any 
flexibility. 

5. CONCLUSIONS
Our  computer  experiments  suggest  that  the 
three  clusters  (Goldberg  icosahedron,  4-
cluster, and 44-hedron) can be built with rigid 
edges, while the rings can only be closed by 
applying some tension - the 8-ring being the 
only exception. If the overall tension is high, 
it  need  not  be  distributed  evenly  over  the 
entire  structure,  but  some  of  the  corpuscle 
elements  may  become  flattened  or  even 
punched in, which spontaneously breaks  the 
overall symmetry. We have seen examples of 
this  in the 6-ring, in the 12-ring with 6-fold 
symmetry,  and  also  in  rings  with  much 
stronger tension (18-ring and 24-ring), which 
were  not  presented  here.  Although  the 
selection of structures studied here is far from 
being comprehensive, the results so far agree 
with  our  expectation  that  deformations  can 
arise more easily if the ring size is a multiple 
of three. 
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