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distribution of cells free in flow. We analysed enough videotape to obtain 100 to
1,600 tethering events, and plotted the natural log of the number of cells that
remained bound as a function of time after initiation of tethering. The most
rapidly dissociating 90% or more of tethered cells were used to determine koff.
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Cytosolic calcium ([Ca2+]i) oscillations are a nearly universal
mode of signalling in excitable and non-excitable cells1–4.
Although Ca2+ is known to mediate a diverse array of cell
functions, it is not known whether oscillations contribute to the
efficiency or specificity of signalling or are merely an inevitable
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consequence of the feedback control of [Ca2+]i. We have developed
a Ca2+ clamp technique to investigate the roles of oscillation
amplitude and frequency in regulating gene expression driven
by the proinflammatory transcription factors NF-AT, Oct/OAP
and NF-kB. Here we report that oscillations reduce the effective
Ca2+ threshold for activating transcription factors, thereby
increasing signal detection at low levels of stimulation. In addition,
specificity is encoded by the oscillation frequency: rapid oscilla-
tions stimulate all three transcription factors, whereas infrequent
oscillations activate only NF-kB. The genes encoding the cyto-
kines interleukin (IL)-2 and IL-8 are also frequency-sensitive in a
way that reflects their degree of dependence on NF-AT versus NF-kB.
Our results provide direct evidence that [Ca2+]i oscillations
increase both the efficacy and the information content of Ca2+

signals that lead to gene expression and cell differentiation.
Oscillations in [Ca2+]i may be advantageous for receptor-

mediated signal transduction, for example by increasing the fidelity
of low-level signalling, preventing desensitization, or increasing
signalling specificity1–4; however, it has been difficult to demonstrate
these and other possible functions5 for two reasons. First, the
amplitude and frequency of [Ca2+]i oscillations triggered through
surface receptors varies among cells and in single cells over time,
resulting in a mixture of stimulus waveforms that complicates
analysis. Second, surface receptors are often coupled to multiple
signalling pathways, making it difficult to ascribe downstream
effects to Ca2+ alone. We have therefore developed a ‘calcium
clamp’ method for generating homogeneous and synchronous
receptor-independent [Ca2+]i oscillations in large populations of
T lymphocytes6 (Fig. 1). Ca2+ signals leading to T-cell activation
are normally generated by a cascade involving antigen binding to
the T-cell antigen receptor (TCR), generation of the second mes-
senger inositol 1,4,5-trisphosphate (InsP3), release of Ca2+ from
internal stores, and Ca2+ influx across the plasma membrane7. Here
we bypass the TCR/InsP3 pathway by treating Jurkat T cells with
thapsigargin, an inhibitor of endoplasmic reticulum Ca2+-ATPases
that depletes internal Ca2+ stores and irreversibly activates store-
operated Ca2+ (CRAC) channels in the plasma membrane8. Appli-
cation of Ca2+ to cells treated in this way elevates [Ca2+]i owing to
influx through CRAC channels, whereas removal of extracellular
Ca2+ allows pumps in the plasma membrane to return [Ca2+]i to
baseline levels. Thus, by rapidly changing the concentration of
extracellular Ca2+, it is possible to generate [Ca2+]i oscillations
having a uniform frequency across cells and an amplitude that is
relatively constant in each cell over time (s.d., 12.7%) and among
cells in the population (s.d., 18.2%; n ¼ 256). A further advantage is
that this technique probably mimics naturally occurring subcellular
gradients of [Ca2+]i, because [Ca2+]i oscillations triggered through
the TCR result from periodic activation of CRAC channels9,10.

We investigated whether oscillations affect the efficiency with
which Ca2+ signals are detected. NF-AT is a Ca2+-dependent
transcription factor expressed in many cells, including T lympho-
cytes, in which it helps to regulate several immune-response genes
including IL-2, IL-4 and tumour-necrosis factor-a (TNF-a)11,12.
NF-AT is activated by Ca2+-stimulated dephosphorylation and
translocation of a cytoplasmic subunit, which binds to a nuclear
subunit induced by protein kinase C or by stimulation of the MAP
kinase pathway11,12. We compared the activity of an NF-AT/lacZ
reporter gene13 in Jurkat cells stimulated with an oscillatory or
constant elevation of [Ca2+]i for 3 hours in the presence of 50 nM
phorbol-12,13-dibutyrate (PdBU). Oscillations were generated
with a period of 100 s, which is similar to the period in intact cells
stimulated through the TCR9,14. Oscillation amplitude was adjusted
to produce the same average [Ca2+]i as in the constant-[Ca2+]i

control cells to determine whether the kinetic features of the
oscillations confer any signalling advantage relative to a sustained
[Ca2+]i increase, independently of the amount of Ca2+ that enters a
cell. Figure 2a shows constant and oscillatory [Ca2+]i stimuli in one
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experiment in which the average [Ca2+]i was ,225 nM; subsequent
fluorescence-activated cell sorting (FACS) analysis indicated that
39% of the cells stimulated with [Ca2+]i oscillations were lacZ +,
whereas only 19% of the cells with constant [Ca2+]i were lacZ +. This
enhancement of NF-AT-dependent transcription was not evident at
higher [Ca2+]i levels. In cells stimulated to an average of ,350 nM
Ca2+, oscillations activated roughly the same amount of lacZ
expression as constant [Ca2+]i elevation (Fig. 2b). The results of
12 paired experiments show that the induction of lacZ by constant
[Ca2+]i elevation falls off sharply below ,300 nM [Ca2+]i, whereas
induction by oscillations is approximately constant down to at
least 200 nM (Fig. 2c). The enhancement of NF-AT-dependent gene
expression by oscillations thus increases as average [Ca2+]i decreases
below ,300 nM (Fig. 2d). In this way, oscillations appear to
increase the ability of small Ca2+ signals to activate NFAT.

A long-standing question in cell signalling is how Ca2+, with its
abundant and varied intracellular targets, is able to achieve speci-
ficity and activate only a subset of those targets. One explanation is
that variations in oscillation amplitude or frequency may discrimi-
nate among different Ca2+-activated signalling pathways. In T cells,
several transcription factors in addition to NF-ATare Ca2+-sensitive,
including NF-kB and Oct/OAP15,16. Both factors are involved in the
control of IL-2 transcription, and NF-kB also helps to regulate a
large number of genes encoding cytokines, growth factors, adhesion
molecules and other surface proteins11,17. To determine whether the
amplitude of the Ca2+ signal can distinguish among transcriptional
pathways, we compared the Ca2+ sensitivity of luciferase reporter
genes driven by NF-AT, Oct/OAP or NF-kB in Jurkat cells. Phorbol
ester (50 nM PdBU) or increased [Ca2+]i (.600 nM) alone did not
activate NF-AT or Oct/OAP measurably in thapsigargin-treated
cells, and only slightly stimulated NF-kB-dependent expression
(,2.5-fold above background). In contrast, the two stimuli acted
together in a synergistic fashion to activate NF-AT, Oct/OAP and
NF-kB by 150-, 31- and 16-fold, respectively. In each case, the Ca2+-
dependent component of the response was completely suppressed
by cyclosporin A, a potent and selective inhibitor of calcineurin,

consistent with a role for this phosphatase in mediating the effects of
Ca2+ on these factors15,18,19. As shown in Fig. 3a, all three pathways
show a similar and highly nonlinear dependence on steady-state
[Ca2+]i. The pronounced nonlinearity of NF-AT activation is con-
sistent with previous studies5,20 and is an important determinant of
the effects of oscillations on NF-AT signaling efficiency (see below).
However, the similar Ca2+ dependencies of the three transcription
factors suggests that oscillation amplitude is not likely to contribute
significantly to selectivity among these pathways in T cells. In a
previous study of B cells21, nuclear translocation of NF-ATappeared
to be more Ca2+-sensitive than that of NF-kB; however, the
transcriptional activity of these factors was not tested.

As oscillation amplitude is unlikely to discriminate among these
three pathways, we tested whether oscillation frequency could. The
calcium clamp was used to generate high-amplitude oscillations
(,1 mM peak) with periods from 100 to 1,800 s. As shown in Fig. 3b,
the activation of all three transcription factors declines with
increasing period. However, NF-kB activation extends to oscillation
periods as long as 1,800 s, in contrast to NF-ATand Oct/OAP, whose
activity vanishes at periods >400 s. Frequency dependence of NF-AT
has also been observed in response to photolytically generated
pulses of InsP3 (ref. 22), indicating that this behaviour is not specific
to the use of thapsigargin to deplete stores. The difference in
frequency requirements among the three factors is consistent with
previous findings that NF-kB persists in the nucleus for .16 min
following a brief Ca2+ spike21, whereas NF-AT quickly exits follow-
ing its rapid rephosphorylation21,23. Thus, oscillation frequency
dictates which combination of transcription factors is active; low
frequencies recruit NF-kB alone, whereas high frequencies activate
NF-AT, Oct/OAP and NF-kB. These results indicate that [Ca2+]i

oscillation frequency can discriminate among different transcriptional
pathways.

The distinct frequency sensitivities of NF-AT, Oct/OAP and NF-
kB suggest that endogenous genes under the control of these factors
may also respond differentially to oscillation frequency. We there-
fore compared the frequency sensitivities of genes encoding IL-2, an

1.5

1.0

0.5

0.0

Avg=275 nM

1.5

1.0

0.5

0.0

1050

Time (min)

 Avg=405 nM

Period=400 s

1.5

1.0

0.5

0.0

Avg=165 nM Period=900 s

100500

Time (min)

Period=100 s

b c
5% CO 2

Ca2+ EGTA

Heated
water bath

Flow valve

Injection port

PC-controlled
valve

To I-CCD and
image processor

Air curtain
heater

Flow

a

[C
a
2
+
] i 

(µ
M

)
[C

a
2
+
] i 

(µ
M

)
[C

a
2
+
] i 

(µ
M

)

Figure 1 Generation of synchronized [Ca2+]i oscillations in T cell populations.
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essential growth factor for T cells, and IL-8, a chemokine involved in
recruiting immune cells to sites of infection. Both genes can be
activated in T cells by Ca2+ ionophore and phorbol ester24,25, but
their promoters are driven by different combinations of transcrip-
tion factors: IL-2 expression is highly dependent on NF-ATand Oct/
OAP binding11,26, whereas IL-8 depends on NF-kB and other factors
but not on NF-AT25,27. Cells were transfected with luciferase reporter
constructs driven by the IL-2 or IL-8 promoters and were stimulated
for 3 h with 50 nM PdBU and constant [Ca2+]i elevation. Both genes
appear to be highly Ca2+-sensitive, with IL-8 being more sensitive
than IL-2 (Fig. 3c). The two genes show different sensitivities to
[Ca2+]i oscillation frequency (Fig. 3d): IL-2 is not expressed at
periods >400 s, whereas IL-8 retains ,20% of its maximal activity
under these conditions. The behaviour of IL-2 resembles that of
NF-AT and Oct/OAP, whereas the behaviour of IL-8 is similar to
that of NF-kB. These results were supported by measurements of
endogenous IL-8 expression in Jurkat cells treated with monensin to
prevent secretion28 (IL-2 expression after 3 h stimulation was too
low to measure accurately). FACS analysis of anti-IL-8-stained cells
indicated that the frequency dependence of IL-8 expression was
similar to that of the reporter gene. Together, these results indicate

that oscillations of different frequencies can lead to the expression of
different sets of genes, presumably as a consequence of their effects
on the underlying transcription factors.

Our results demonstrate two important properties of nuclear
signalling by [Ca2+]i oscillations. First, oscillations enhance signal-
ling efficiency specifically at low levels of stimulation. This effect
arises from the highly nonlinear dependence of transcription on
[Ca2+]i, so that oscillations periodically exceed the threshold for
activation whereas a small constant [Ca2+]i rise of the same average
magnitude does not. The tendency of [Ca2+]i to oscillate at low
receptor occupancy in many cells may thus optimize sensitivity to
weak external stimuli. Second, oscillations confer specificity on an
otherwise highly pleiotropic Ca2+ signal. By differentially control-
ling the activation of distinct sets of transcription factors and the
expression of different genes, oscillation frequency may direct cells
along specific developmental pathways29,30. Frequency-dependent
gene expression is likely to be widespread, as Ca2+-dependent
transcription factors like NF-kB and NF-AT are present in a great
variety of cells and oscillations can occur with periods of seconds to
hours1,29. M
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Methods

Cells and solutions. All experiments were done on the NF-ATZ-DIPA clone of
Jurkat T cells, stably transfected with an NF-AT-lacZ reporter gene and selected
for high lacZ inducibility13. Experiments were done in RPMI 1640 without
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phenol red or riboflavins and supplemented with 25 mM HEPES and 0.2%
BSA. Solutions were maintained at 4 8C until immediately before each experi-
ment, when they were warmed to 37 8C and supplemented with 50 nM PdBU
and either 0.5 mM EGTA (,50 mM free Ca2+) or 1 mM Ca2+ (1.5 mM total
Ca2+).
Transfection of the reporter genes. NF-AT, NF-kB, Oct-1/OAP and IL-2
reporter constructs were provided by J. Goldberg and G. Crabtree and were
derived from constructs described previously16. Multimeric copies of NFAT (3
copies), NF-kB (4) or Oct/Oap (4) binding sites, linked to a minimal (non-
inducible) IL-2 promoter (−74 to þ47), were inserted between the SmaI and
HindIII sites in the multiple cloning region of the pGL-3 luciferase reporter
vector (Promega). The construct with the intact IL-2 promoter region was
made by inserting 371 bp of the IL-2 initiation region (−324 to þ47) into the
pGL-3 vector. The IL-8 reporter construct was provided by K. P. LeClair27.

Transfection of 107 cells was by electroporation with 10 mg of the reporter
vector, 1 mg of a vector containing large-T antigen and 2 mg of a vector
encoding the transmembrane and extracellular domains of CD8. Large-T
antigen was used to increase the number of copies of the reporter construct in
each cell, and the CD8 construct was used to determine the transfection
efficiency. Transfection efficiencies were 30–40%; viability following centrifu-
gation to remove cells killed during electroporation was 85–95%. Experiments
were conducted 24–48 h after transfection when the expression of reporter
genes was maximal.
Ca2+ clamp and Ca2+ measurements. Transfected cells were loaded with
2 mM Fura-PE3/AM (Teflabs) for 1 h at 37 8C in loading medium (RPMI 1640,
25 mM HEPES, 2% fetal bovine serum), washed, and incubated for another
hour to allow complete de-esterification of the dye. Loaded cells (2–3 3 105)
were allowed to adhere to a polylysine-coated laminar flow chamber and were
placed on the heated stage of a Zeiss Axiovert 35 inverted microscope. The
laminar flow chamber (60 ml volume) was connected to two heated reservoirs
containing 1.5 mM and 0 mM Ca2+ solutions, and pressurized with a mixture of
95% air and 5% CO2. At the start of each experiment, cells were treated with
1 mM thapsigargin in 0 mM Ca2+ solution for 5 min to deplete internal Ca2+

stores and irreversibly activate CRAC channels. A computer-controlled sole-
noid valve (General Valve) was used to switch rapidly between the Ca2+-
containing and Ca2+-free solutions flowing into the chamber and over the cells.
The solution in the chamber was fully exchanged about once per second and
was maintained at 37 8C. Cells were stimulated for 3 h while [Ca2+]i was
measured every 5–10 s by video microscopy as described10. Fura-PE3 was
calibrated on the microscope in a microcuvette using solutions containing
1 mM EGTA and 10 mM Ca2+ according to ref. 10.
Reporter gene assays. Following stimulation cells were washed from the
chamber, lysed by freeze/thawing and subjected to a luciferase assay using
standard methods. All measurements were done in triplicate and normalized to
the total number of cells determined using a Coulter Counter (Coulter
Electronics). b-Galactosidase (b-gal) expression was measured by flow
cytometry using the FACS–Gal protocol13. Steady-state [Ca2+]i dependence
of luciferase reporter genes (Fig. 3) was determined after 3 h stimulation with
1 mM thapsigargin, 50 nM PdBU and variable extracellular [Ca2+]. Luciferase
activity was normalized to values between 0 and 100%, given by the responses
to TG þ PdBU in medium containing 0.5 mM EGTA or 1.5 mM Ca2+,
respectively.
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Inositol 1,4,5-trisphosphate (InsP3) releases calcium from intra-
cellular stores and triggers complex waves and oscillations in
levels of cytosolic free calcium1–5. To determine which longer-
term responses are controlled by oscillations in InsP3 and cyto-
solic free calcium, it would be useful to deliver exogenous InsP3,
under spatial and temporal control, into populations of unper-
meabilized cells. Here we report the 15-step synthesis of a
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