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Gene expression is a stochastic, or ‘‘noisy,’’ process. This noise
comes about in two ways. The inherent stochasticity of biochem-
ical processes such as transcription and translation generates
‘‘intrinsic’’ noise. In addition, fluctuations in the amounts or states
of other cellular components lead indirectly to variation in the
expression of a particular gene and thus represent ‘‘extrinsic’’
noise. Here, we show how the total variation in the level of
expression of a given gene can be decomposed into its intrinsic and
extrinsic components. We demonstrate theoretically that simulta-
neous measurement of two identical genes per cell enables dis-
crimination of these two types of noise. Analytic expressions for
intrinsic noise are given for a model that involves all the major
steps in transcription and translation. These expressions give the
sensitivity to various parameters, quantify the deviation from
Poisson statistics, and provide a way of fitting experiment. Tran-
scription dominates the intrinsic noise when the average number
of proteins made per mRNA transcript is greater than �2. Below
this number, translational effects also become important. Gene
replication and cell division, included in the model, cause protein
numbers to tend to a limit cycle. We calculate a general form for the
extrinsic noise and illustrate it with the particular case of a single
fluctuating extrinsic variable—a repressor protein, which acts on
the gene of interest. All results are confirmed by stochastic simu-
lation using plausible parameters for Escherichia coli.

Molecules are discrete entities. When present in large num-
bers, addition or removal of any single molecule typically

has little effect on the properties of a system. However, stochastic
f luctuations can become significant in smaller systems. In living
cells, many components are present at very low copy numbers,
[e.g., of order one for DNA loci and of order tens for transcrip-
tion factors (1)]. Therefore, stochastic effects are thought to be
particularly important for gene expression and have been in-
voked to explain cell–cell variations in clonal populations (2–4).
Indeed, cellular components interact with one another in com-
plex regulatory networks. Thus, f luctuations in even a single
component may potentially affect the performance of the entire
system.

Consider a particular gene of interest. The amount of protein
it produces will vary from cell to cell in a population and over
time in a single cell. These fluctuations originate in two ways:
First, even if all cells were in precisely the same state, the
reaction events leading to transcription and translation of the
gene would still occur at different times, and in different orders,
in different cells. Such stochastic effects are set locally by the
gene sequence and the properties of the protein it encodes and
will be referred to as ‘‘intrinsic’’ noise.

In addition, one must consider that other molecular species in
the cell, e.g., RNA polymerase (RNAP), are themselves gene
products and therefore will also vary over time and from cell to
cell. This variation causes additional, and corresponding, f luc-
tuations in the expression of the gene of interest that will be
referred to as ‘‘extrinsic’’ noise. Thus, extrinsic sources of noise
arise independently of the gene but act on it. Examples of
extrinsic variables are numerous. They include the number of
RNAPs or ribosomes, the stage in the cell cycle, the quantity
of the protein, and mRNA degradation machinery, and the cell

environment. In general, the total variation in gene expression
will have both intrinsic and extrinsic sources. A particular
cellular component will suffer intrinsic f luctuations in its own
concentration and, at the same time, will be a source of extrinsic
noise for other components with which it interacts.

Although the stochastic nature of gene expression has long
been postulated (2), previous theoretical research (5–11) has
concentrated on intrinsic noise. Excepting studies of plasmid
copy number control (12), extrinsic effects have only been added
in a post hoc manner (13). It is not known which molecular
properties influence noise or even how a clear measurement of
intrinsic noise could be obtained in vivo.

This paper seeks to address several problems. First, we
distinguish between intrinsic and extrinsic sources of noise and
integrate both within a single framework. Second, we model
intrinsic noise at a level that allows direct connection with
biochemical parameters, including those related to cell growth.
Third, we suggest an experimental method that can be used to
discriminate and quantify the two components of noise in living
cells. Our approach, by integration of intrinsic and extrinsic
effects, is general enough to allow comparison with experimental
data (14).

Definitions
Fluctuations in the rates of transcription and translation of a
particular gene result in corresponding fluctuations in the
amount of its protein product. A natural and biologically relevant
measure of the magnitude of gene expression noise is thus the
size of protein fluctuations compared to their mean concentra-
tion. If P(t) is the protein concentration at time t, then the
protein noise, �(t), is given by

�2�t� �
�P�t�2� � �P�t��2

�P�t��2 , [1]

where the angled brackets denote an average over the probability
distribution of P at time t. We will similarly use standard
deviation divided by mean, or coefficient of variation, as a
measure of noise in other distributions.

To examine the noise for a particular gene across a cell
population, let the intrinsic and extrinsic variables (including
time—cells are typically desynchronized) for that gene be given
by vectors I and E, each of whose components represent a
different source of noise. The expression level of the gene in one
cell, as measured experimentally, is denoted Pk (with k a cell
label). From a snapshot of N genetically identical cells, the Pks
can be averaged to find the moments of the protein distribution.
This averaging process (where m � 1 and m � 2 for the mean
and variance, respectively) is equivalent to
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1
N�

k�1

N

P k
m ��dE dI P m�E, I�p�EI�. [2]

Here p(EI) is the probability density function for the intrinsic
and extrinsic variables, and P(E, I) is the measured expression
level for particular values of E and I. Using the product rule of
probabilities, this becomes

1
N�

k�1

N

P k
m ��dE p�E��dI P m�E, I�p�I�E�. [3]

The second integral is an average over the intrinsic variables with
the extrinsic variables held fixed and shall be denoted by angled
brackets:

� P m�E�� ��dI P m�E, I�p�I�E�. [4]

Averages over the extrinsic variables will be indicated with an
overbar, so that Eq. 3 becomes

1
N�

k�1

N

P k
m � �P m�, [5]

that is, an average over both intrinsic and extrinsic noise sources.
Hence, the measured noise, �tot, defined empirically by

�tot
2 �

1
N�k P k

2 � �1
N�k Pk	2

�1
N�k Pk	2 , [6]

is equivalent to

�tot
2 �

� P 2� � �� P �	2

�� P �	2
. [7]

This can be written as

�tot
2 �

� P 2� � � P �2

�� P �	2
�

� P �2 � �� P �	2

�� P �	2

� �int
2 � �ext

2 . [8]

In other words, the square of the experimentally measurable
noise is a direct sum of the intrinsic, �int, and extrinsic, �ext,
contributions. The intrinsic noise, �int, is proportional to the
variance of the intrinsic distribution, calculated for a particular
value of the extrinsic variables and then averaged over all
possible values of these variables. The extrinsic noise, �ext,
vanishes as the extrinsic distributions become more and more
spiked.

Finally, we need to address experimentally how both intrin-
sic and extrinsic contributions can be discriminated from the
total noise, given by Eq. 6. From Eq. 8, this requires a
measurement of the quantity �P �2. Consider what would
happen if two identical copies of the gene were present in the
same (kth) cell, and their protein products, labeled P k

(1) and P k
(2),

were measured simultaneously. These will have different values
of the intrinsic variables, but, because both are present in a single
cell, they will be exposed to the same intracellular environment

and so have the same value of the extrinsic variables. Therefore,
by summing their product, we obtain

1
N�

k�1

N

P k
�1� P k

�2� ��dE dI1 dI2 P�E, I1�P�E, I2�p�EI1I2�

��dE p�E�
�dI P�E, I�p�I�E��2

� � P �2 , [9]

precisely the average needed.
Experimentally, two distinguishable variants of green fluores-

cent protein, corresponding to P (1) and P (2), would allow
estimation of Eq. 9 (14). By considering quantities such as
�k(P k

(1) � P k
(2))2, the intrinsic noise could be measured and �ext

extracted from the total noise by using Eq. 8.

Expressions for Intrinsic Noise
To understand the sources of intrinsic fluctuations, consider the
simplified model of gene expression shown in Fig. 1. All extrinsic
variables (excepting time) are set to constant values; thus, the
binding of RNAP, ribosomes, and degradosomes, for example,
become first-order processes as their respective concentrations are
held fixed. We model the bacterial cell cycle by allowing the gene
copy number, n, to double at some (fixed) time td into each cycle and
to halve at cell division (time T). Non-DNA molecular species are
randomly distributed at cell division between the two daughter cells.

Fig. 1 Inset shows a simplified version of the model that can be
solved analytically. Two effective rate constants, marked with
primes, have been introduced and can be related to those of the full
system. The mRNA half-life is given by the set of differential
equations describing �mRU� and �mC2�: d�0 � log 2 	 (�1 � �0)�2

Fig. 1. Reaction scheme detailing constitutive expression of a protein P. All
molecular species shown are intrinsic variables. Transcription is modeled (15)
as reversible binding of RNAP to promoter, D (rates f0 and b0). Isomerization
from closed to open complex and initiation of transcription are approximated
as a first-order process (rate k0). Only the leader region of the mRNA, mRU, is
followed. It is made by transcribing polymerase, T, at rate �0. mRNA is de-
graded by the binding of the degradosome (rate mf0) to form complex mC1,
which decays in a first-order manner. Following ref. 6, ribosomes compete
with degradosomes for the leader region of the mRNA and bind reversibly
(rates mf1 and mb1). Start of translation is from the mC2 state with rate k1,
which frees mRU for further binding. Protein is translated (rate �1) in the mT
state and decays with rate d1. Inset shows a simplified model of translation,
with mR now designating an entire mRNA molecule, degrading at rate d �0, and
is translated with rate � �1.

12796 � www.pnas.org�cgi�doi�10.1073�pnas.162041399 Swain et al.



with �1 � k1 
 mb1 
 mf0 
 mf1 and �0
2 � �1

2 � 4 mf0(k1 
 mb1).
The number of proteins made from a particular mRNA is distrib-
uted geometrically (similar to ref. 6), and so the mean number of
proteins produced per transcript, b, can be shown to be

b �
1

mf0
�

k1mf1

k1 � mb1
[10]

and the overall translation rate is ��1 � bd�0, by definition.

Simulation Results
Stochastic simulation (16, 17) was used to model the scheme of
Fig. 1 by using parameter values published as supporting infor-
mation on the PNAS web site, www.pnas.org. The probability of
a given reaction occurring is equal to the product of the rate
constant for that reaction and the number of potential reactants
present. Time steps between reactions obey a Markov process
and take account, for binary reactions, of the growing cell
volume (17). The latter increases linearly (18) from an initial
value until cell division (at time T), when it halves. Gene
doubling and binomial partitioning of non-DNA molecules are
included, and one daughter cell is followed at each division.

After a sufficient number of divisions, the protein number and
concentration tend not to a steady-state but rather to the limit
cycle (whose period is set by cell division), shown in Fig. 2. The
slight kink in the protein number curve is due to the increased
rate of protein production as the number of genes doubles
(chosen arbitrarily to be at time td � 0.4T into the cell cycle). The
protein concentration is approximately the same before and
after cell division once the limit cycle state has been reached. It
falls initially (before gene replication) as protein is produced at
a rate slower than that of cell growth.

The time scales associated with transcription and mRNA
degradation are much shorter than the protein decay rate or the
cell cycle time (see supporting information). Therefore, mRNA

levels alternate between two approximately steady states, with a
short transient in between. Despite the noise, this effect can be
discerned in Fig. 2 (compare numbers for t � td with those for
t � td).

Analytical Results
Assuming that the molecules involved in transcription are in one
of two steady states (depending on the gene copy number n), and
that all other time dependence is absorbed into the protein
distribution, then the simpler model, shown in Fig. 1 Inset, can
be substituted for the full scheme and solved analytically (see
supporting information).

The mean mRNA number satisfies

�mR� �
f0k0n
d�0�

[11]

before replication, t � td and twice this result for t � td. Here,
� � f0 
 b0 
 k0.

The mean protein number, which changes with time, obeys

�P�t�� �
��1
d1

�mR��0�t� [12]

with �0 a continuous function of t,

�0�t� � �1 �
e�d1�T�td
t�

2 � e�d1T
for 0 � t � td

2
1 �
e�d1�t�td�

2 � e�d1T� for td � t � T
. [13]

Note that the factor of two arising from gene replication is
absorbed into the function �0, and so �mR� in Eq. 12 is given by
Eq. 11 regardless of t being greater or less than td.

Eqs. 12 and 13 can be understood as being the solution of

d�P�

dt
� v�1�mR� � d1�P� for 0 � t � td

2v�1�mR� � d1�P� for td � t � T [14]

with continuity at t � td and the limit cycle boundary condition

�P�T�� � 2�P�0��, [15]

which arises because of the partition at each cell division (see Fig.
2 Upper), that is, a simple birth-and-death process with the birth
rate doubling after gene replication.

The noise in mRNA number is

�mR
2 �

�mR2� � �mR�2

�mR�2 �
1

�mR�
�

d�0�0�d�0 � � � �0�

n�d�0 � ���� � �0��d�0 � �0�
.

[16]

Eq. 16 is less than the Poisson value, 1��mR�, because conser-
vation of DNA species limits the maximum amount of C that can
be present. This in turn gives an upper bound to the rate at which
T is created, narrowing the distribution of T. A narrower T
distribution leads to a narrower mRNA distribution and so to the
negative term in Eq. 16. Typically, however, this correction is
rarely large.

The intrinsic noise in protein number (denoted �̂int, rather
than �int, as the extrinsic variables have not yet been averaged
away) satisfies in the limit small d1�d�0 (see supporting informa-
tion for the full expression),

�̂int
2 �t� �

1
�P�t��

�
1

�mR�
�1 �

f0 k0

�2 	 d1

d�0
1�t� [17]

with

Fig. 2. Simulation results for protein and mRNA number using the model of
Fig. 1 Inset. A strong promoter is used (k0 � 0.1 s�1), and there is just one copy
of the gene on the chromosome. On average, 15 proteins are synthesized per
mRNA transcript, and the mRNA half-life is 1 min. Gene replication occurs
every td � 0.4T into the cell cycle and is marked with a small dot on the time
axis. All other parameters are given in the supporting information. The total
noise �tot is defined in Eqs. 6 and 7, with the overbar, in this simple case, just
denoting a time (cell cycle) average. This is given for each species in the upper
right-hand corner.
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1�t� �
2 � e�d1T

2 � e�d1T

	 �
4 � e�2d1T � 2e�2d1t � e�2d1�T
t�td�

�2 � e�d1T � e�d1�T
t�td��2 for 0 � t � td

4 � e�2d1T � e�2d1t � 2e�2d1�t�td�

2�2 � e�d1T � e�d1�t�td��2 for td � t � T

[18]

for each traversal of the limit cycle. Note that 1��P� is also of
order d1�d�0 from Eq. 12 as ��1 � bd�0. Eq. 17 contains a Poisson
term, the mean �P(t)�, and a non-Poisson term, which is a
measure of the stochastic effects present in transcription. The
limit d1�d�0 �� 1 taken is expected to be valid for many genes in
E. coli, because protein lifetimes are typically hours, whereas
those of mRNA are only minutes (see supporting information).

Fig. 3 shows the good agreement between theory and simu-
lation. Because of the difference in gene copy number, the
number of mRNAs for t � td is approximately twice that for
t � td (see Eq. 11). If cell cycle effects are temporarily set aside,
the protein noise, dominated by mRNA number, will therefore
be higher for a gene copy number of n than for a gene copy
number of 2n. However, because of the cell cycle, immediately
after cell division the protein noise is low (being still determined
by the previous 2n gene state) and will grow for 0 � t � td as
it tends toward the higher value set by the cell being in a n gene
state. Immediately after gene replication, the noise is high (from
the cell having just left the n gene regime) and so for td � t �
T will fall as it tends toward the lower value prescribed by the
cell’s 2n state. Consequently, the intrinsic protein noise goes
through a maximum at t � td.

The intrinsic noise, via Eq. 12 and using ��1 � bd�0, can also be
written as

�̂int
2 �t� �

d1

d�0

1
�mR�
1

b
0�t� � �1 �

f0k0

�2 	1�t��, [19]

with 0(t) � 1��0(t) given in Eq. 13. The parameter depen-
dence and form of Eq. 19 can in fact be shown to hold for the
full model of Fig. 1 when d1�d�0 �� 1. By inspecting Eq. 19, only
the first term depends on the parameters controlling translation

rates. Therefore, if the second term dominates the first, tran-
scription rather than translation will determine protein intrinsic
noise. Expanding in d1T, this condition is fulfilled if

b �
1

mf0
�

k1mf1

k1 � mb1
��

3

2�1 �
f0k0

�2 	 [20]

for d1T �� 1. As 1 � f0k0��2 
 3�4, Eq. 20 will certainly be satisfied,
and so transcription will dominate over translation if the number of
proteins per transcript (or burst size in the terminology of refs. 6 and
10) is much greater than two, i.e., b �� 2. In fact, the number of
proteins per transcript may be of order tens (19) (although indi-
vidual translation rates vary widely). In such cases, we conclude that
transcription is the chief source of intrinsic noise. From Eq. 20,
noise at translation becomes important only if mf1, the rate of
ribosome binding, and k1, the rate of commitment of a bound
ribosome to carrying out translation, are low and if mf0, the rate of
mRNA degradation, is high.

Previous work claimed that translation controls protein noise
(10). This conclusion was reached by using an alternative noise
definition (variance, rather than standard deviation, over the
mean), which divides out all dependence on transcriptional
parameters. In contrast, Eq. 19 treats transcription and transla-
tion on an equal footing and keeps all parameter dependence
explicit. (For example, if the gene copy number, n, is increased
100-fold, the noise is reduced as expected intuitively.) The
conclusion that translation is a minor contributor to noise (for
b � 2) is thus transparent. This conclusion is also confirmed by
recent independent simulations of LacZ expression (7).

Eq. 19 makes explicit the dependence of the intrinsic noise on
the parameters shown in Fig. 1. A high ratio of protein to mRNA
lifetime (low d1�d�0) reduces noise. Given Eq. 11, the importance
of the rates controlling the initiation of transcription can be seen;
both terms in Eq. 19 decrease for high f0, the ‘‘on’’ rate of the
RNAP, a large isomerization rate, k0, and to a lesser extent a low
RNAP ‘‘off’’ rate, b0. The square of the noise is independent of
�0 and �1 and varies inversely with the gene copy number, n.
Thus, for example, fast-growing bacteria, which undergo multi-
ple rounds of initiation of DNA replication before division, are
therefore expected to be intrinsically less noisy because of their
higher n values (depending on gene distance from the origin of
replication). The additional parameter dependence when trans-
lation also becomes important, i.e., when b �� 2 and �2 � 1�b,
is given by Eq. 10.

To illustrate the role of the cell cycle and the significance of
the gene replication time, td, let us, for the moment, ignore all
other effects and assume that time is the only extrinsic variable.
Then, the extrinsic average (the overbar) in Eq. 8 is just a cell
cycle average and

�int
2 �

�
0

T dt
T

��P�t�2� � �P�t��2�


�
0

T dt
T

�P�t���2 , [21]

for example. This experimentally accessible value is an approxima-
tion to the ‘‘true’’ average value of the intrinsic noise, � dt �̂int

2 (t),
which involves only one integral and not two. Table 1 demonstrates
the validity of Eq. 21 as an estimate of the true noise and the
excellent agreement between theory and simulation.

In the limit where d1T 3 0 (appropriate for GFP in E. coli),
protein does not decay but is diluted only because of partition at
each cell division. Eq. 21 is then simple to evaluate and satisfies
(with �d � td�T)

Fig. 3. Comparison of analytic solution and stochastic simulation. The noise
in protein level (averaged over 5,000 runs) for the three different models is
plotted as a function of time (in units of the cell cycle). Upper light dotted
curve is the result of a simulation of the full model of protein expression, Fig.
1, with k0 � 0.01 s�1. Dotted curve is a simulation of Fig. 1 Inset, whereas the
full curve is a plot of Eq. 17. At the beginning of the cell cycle, �̂int is slightly
greater than that at the end because of the random partitioning of proteins
and mRNA into daughter cells on division.
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�int
2 �

1
Td�0�mR�  2

b��d
2 � 4�d � 6�

��1 �
f0k0

�2 	 4�3�d
2 � 8�d � 10�

3��d
2 � 4�d � 6�2 �

[22]

Both terms in Eq. 22 can be seen to increase monotonically with
�d � td�T; a low td implies that the cell spends most time in the
high gene copy number state, 2n, and so protein and mRNA
levels increase, reducing noise. As td�T increases, Eq. 22 varies
by a factor of around 0.35 to 0.7. Thus, a steady-state approxi-
mation, in which time dependence is ignored (0 � 1 � 1),
could overestimate intrinsic noise by as much as 65%.

Expressions for Extrinsic Noise
Time is, of course, not the only extrinsic variable; the sources of
extrinsic noise are multiple, ranging from fluctuations in the
bacterial growth rate to changes in the degree of DNA super-
coiling and are often poorly understood. The simplest way to
model these effects is to let each extrinsic variable, Ek, have
mean �k and standard deviation, k, and an independent,
normal distribution. Using asymptotic expansion methods (20),
performing an extrinsic average of a function f(E) then gives

�dE p�E�f�E� � f��� �
1
2 �

k

�k
2�k

2 f �� [23]

in the limit of small extrinsic noise, �k � k��k. Here we write
�k for a partial derivative with respect to the variable xk � Ek��k.

The extrinsic average arises in Eq. 8 as, experimentally,
averages are taken over a population of cells, each cell having a
different set of values of the extrinsic variables. The theoretical
intrinsic noise, Eq. 19, is calculated with all extrinsic variables
fixed and therefore needs a correction term before it can be
properly compared with experiment. Rather than also average
over time explicitly, we will, for the sake of clarity, treat it just
as a parameter in this section. The intrinsic noise, �int

2 , then
satisfies, via Eq. 23,

�int
2 �

� P 2� � � P �2

�� P �	2

� �̂int
2 
1 � �

k

1
2

�k
2��k

2�� P 2� � � P �2�

� P 2� � � P �2 � 2
�k

2� P �

� P � 	�,

[24]

with �̂int given by Eq. 17 and all the extrinsic variables set to their
mean values, �k. Experimentally, it is possible to continuously
vary the rate of transcription from certain inducible promoters
(14, 21). Eq. 24 implies that there is a correction to the more
naive expectation, from Eq. 19, that the intrinsic noise should
vary as the inverse square of induction level (assuming that the
latter is proportional to the number of mRNAs).

The extrinsic noise, �ext, obeys

�ext
2 �

� P �2 � �� P �	2

�� P �	2

� �
k

�k
2�k

2, [25]

with all extrinsic variables set to their mean and �k � (�k log�P�)2

defined, in analogy with statistical physics, as a noise ‘‘suscep-
tibility.’’ The individual �k measure the contribution of a par-
ticular extrinsic process to the total noise strength.

An Example: Repression
To illustrate the effects of a fluctuating extrinsic variable, we
consider a gene of interest that is repressed by another extrinsic
protein. The repressor has a noise given by Eq. 17 with the
appropriate parameter values for its own expression. To find the
intrinsic noise, from Eq. 9, we assume that two identical copies
of our gene are present, both acted on by the same repressor.

Repression is modeled by the repressor, R, binding to the
promoter and preventing access to it by RNAP (ref. 22). This
repressor–DNA complex forms and decomposes with rates f1
and b1, respectively, implying that the mean mRNA number of
the (repressed) protein obeys

�mR� �
f0k0n

d�0�� � �K�
, [26]

where � � b0 
 k0 and K � f1�b1.
In Eq. 26, to make the extrinsic repressor concentration

explicit, the ‘‘on’’ rate (which is really a second-order process)
should be written as f1 � f̂1�rep, where f̂1 is the binding rate of
a single repressor to DNA, and �rep, the mean repressor number.
Applying the definition of �k to Eq. 12, with �mR� given by Eq.
26, the repressor noise susceptibility can be found, and Eq. 8
becomes

�tot
2 � �̂int

2 �
K2�2

�� � �K�2 �rep
2 , [27]

where �̂int
2 is given by

�̂int
2 �t� �

1
�P�t��

�
1

�mR�
�1 �

f0k0

b1
�
b1�1 � K� � �K

�� � �K�2 	d1

d�0
1�t�,

[28]

with Eq. 26 again.
The total, intrinsic, and extrinsic noises found by simulation

are compared with the corresponding theoretical values (with
time again included properly as an extrinsic variable) in Table 2.
The good agreement, as well as validating Eqs. 27 and 28, also
demonstrates the suitability of the Gaussian approximation
implicit in Eq. 23 as the repressor is expressed in the simulation
using the full scheme of Fig. 1 and not added in an ad hoc
manner.

The repressor noise may dominate the extrinsic noise to such an
extent that Eq. 27 is still valid when all other extrinsic variables
fluctuate. For example, in ref. 14, the transcription rate of two
distinguishable alleles of gfp, both having the same regulatory
sequences, is controlled by a repressor. When the repressor con-
centration is systematically varied from low to high values (by
adding different amounts of inducer), the extrinsic noise goes

Table 1. Comparison of theory and simulation for a
constitutively expressed gene

�

Protein nos. Protein concentration

Simulation Theory Simulation Theory

�tot 0.26 � 0.003 0.26 0.15 � 0.005 0.15
�int 0.15 � 0.007 0.15 0.15 
 0.007 0.15
�ext 0.21 � 0.004 0.21 0.05 � 0.01 0.04

Time is the only extrinsic value, and there is consequently almost no
extrinsic noise in the protein concentration (because this varies little during
the cell cycle; see Fig. 2). The intrinsic noise in both cases, calculated by Eq. 21
(with an appropriate expression for cell volume when needed), is a very good
approximation to �dt�̂int

2 , which is found to be 0.15 � 0.008 from simulation
and 0.15 from integrating Eq. 17. Parameter values are published as support-
ing information on the PNAS web site, except k0 � 0.01 s�1. Values stated are
mean results from 100 simulations and errors are �1 SD.
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through a maximum (14). This phenomenon can be understood by
realizing that the extrinsic noise is dominated by the repressor.
Although �rep increases with increasing repressor concentration,
�rep, the noise in repressor number, decreases. As a result of these
two opposing behaviors, �ext (and therefore �tot) exhibits a maxi-
mum as a function of repressor concentration. This behavior
illustrates clearly the importance of noise susceptibilities in setting
cell–cell variation.

Conclusion
We have presented a theoretical framework that enables inter-
pretation of experimental measurements of stochasticity in gene
expression. Cell–cell variation in expression of a single gene
(�tot) is not a direct measure of intrinsic noise. Rather, it contains
both intrinsic and extrinsic contributions. In particular, extrinsic
noise, a consequence of the different local environments of the
gene in the different cells, must be considered.

Only the intrinsic variables (given in Fig. 1) vary from gene to
gene, as well as moment to moment, within a particular cell. By
changing the parameters that influence these variables, the cell
can locally affect the noise in expression of a given gene. On the
other hand, alterations in the extrinsic variables can potentially
affect all genes within the cell (although the magnitude of these
effects for one gene may be very different from those for
another). Eqs. 17 and 19 are analytical expressions for the major
component of the intrinsic noise. There is a Poisson term,
expected for a birth-and-death process, determined by the
protein mean, and an additional contribution coming from the
noise generated during transcription (essentially a time average

of the noise in mRNA level). Two noise regimes exist: if the
translation efficiency, or burst size (6), b, is high (more than two
proteins per transcript), as is believed to be typical in E. coli, then
transcription dominates intrinsic noise. Otherwise, translational
effects must also be considered.

All the major steps in transcription and translation are ac-
counted for, and the complete parameter dependence of the
noise is given by Eq. 19 with Eq. 10. Intrinsic noise (except
possibly for very short lived proteins) is unaffected by �0 and �1,
the rates of transcription by RNAP and translation by a ribo-
some, respectively. As transcription usually dominates, f0 and b0,
the ‘‘on’’ and ‘‘off’’ rates of RNAP as well as the isomerization
rate, k0, strongly influence noise. Longer-lived proteins (com-
pared to mRNA lifetimes) and genes with high copy number are
less stochastic. The chromosomal position of the gene also
controls intrinsic noise—genes replicated early being less noisy.

The cell cycle drives protein numbers and intrinsic noise to a
limit cycle. Protein numbers can be significantly different from
the steady-state approximations used in the literature. The
intrinsic noise itself does not change appreciably during the
course of the cell cycle, but the cell cycle is crucial in determining
its absolute magnitude.

The extrinsic noise is expected to be a linear sum of the noise in
each of the extrinsic variables (see Eq. 25), where the coefficients
play the role of noise ‘‘susceptibilities.’’ These susceptibilities de-
termine the relative importance of each term in the total extrinsic
noise and allow exploration of how the environment in which a gene
is expressed influences its expression level. By simulating a re-
pressed gene, where the repressor number is the only fluctuating
extrinsic variable, we have verified our analytical expressions are
quantitatively correct. Experimentally, the intrinsic and extrinsic
noise can often be of similar magnitude (14). For a given gene,
however, the quantity of interest is usually the intrinsic noise, which
we have shown here can be measured by monitoring expression
from two identical copies of the same gene integrated into each cell
(see also ref. 14).

Our theoretical framework should provide support for exper-
imental research (14) aimed at discovering whether noise is
detrimental to the cell, whether it can be ‘‘regulated away’’ with
higher-level circuitry (23), and to what extent it might confer
evolutionary advantages on a clonal population.
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Table 2. Comparison of theory and simulation for a gene acted
on by a repressor

� Simulation Theory

�tot 0.51 � 0.02 0.51
�int 0.45 � 0.02 0.44
�ext 0.24 � 0.03 0.26

There are two extrinsic variables: time and the repressor. Noise is calculated
for protein numbers, not concentrations. To find the intrinsic noise, two copies
of the (repressed) gene were simulated (see text). All proteins (including the
repressor) were created according to the full scheme of Fig. 1 (with, for
simplicity, the same rate constants, although different tds). Parameter values
are given in the supporting information, except k0 � 0.01 s�1, f̂1 � 5 	 107

M�1�s�1, b1 � 0.33 s�1, and td � 0.7T for the repressor gene. �rep is calculated
to be 0.17 by integrating Eq. 17 over one cell cycle. Because of the repressor,
expression is reduced to about 10% of its constitutive level (the expression
level of Table 1). Values given are mean results from 100 simulations, and
errors are �1 SD.
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