

Good ideas in System Biology

- 1. Structure of biological networks (W)
- 2. Sequence evolution (J)
- 3. Game theory (W)
- 4. Population genetics (J)
- 5. Populations dynamics (J)
- 6. Signal processing in the nervous system (W)
- 7. Self-organizing maps and associative memory (W)
- 8. Evolutionary algorithms (J)
- 9. Allometry and bionics (W)
- 10. Pattern formation (J)

1. Structure of biological networks

basics question:

- What are the structural features in biochemical networks?
- What determines their shape?
- Scale-free and small-world networks
 - Definitions
 - Structures of real-world biological networks
 - Possible evolutionary advantages
- Network motifs
 - Defining and detecting network motifs
 - The feed-forward loop

2. Sequence evolution

- basics question:
 - How do macromolecules (RNA, DNA, proteins) evolve?
 - How can information content of genes be maintained/increased?
- Modelling self-replicating molecules
 - Mutation and selection dynamics
 - Quasi-species
- The hypercycle
 - Principle of natural self-organization
 - "the analog to Darwinian systems at the next higher level of organization"

3. Game theory

- basics question:
 - What determines whether individuals cooperate or compete with each other?
 - How can 'useless' things like the peacock's tail evolve?
 - Does optimal behaviour of individuals lead to Modelling selfreplicating molecules?
- Evolutionary game theory
 - Prisoner's dilemma and hawk-dove game
 - 5 ways to make cooperation a successful strategy
- Applications
 - Cheating viruses and bacteria
 - How could multicellular organisms arise?
 - The peacock's tail

- basics question:
 - How does the frequency of a mutant gene in a population change over time?
 - How is genetic variability maintained?
 - What are the main factors that drive establishment of new mutations in the population?
- Selection

x-Planck-Institut molekulare Genetik

- Modelling selection
- Selection types
- Random genetic drift
 - Effective population size
 - Fixation probability and time
- Neutral and nearly neutral theory of evolution

5. Population dynamics

- basics question:
 - How can we understand dynamics of single and interacting populations?
- Single species populations
 - Growth dynamics
 - K, r –strategies
 - Threshold phenomena and catastropes
 - Hysteresis in fish populations
- Interacting populations
 - Predator-Prey systems
 - Mutualism and symbiosis

6. Signal processing in the nervous system

- basics question:
 - How do nerve cells generate spikes?
 - How can nerve signals code and filter complex signals?
- Nerve cells
 - Hodgkin-Huxley model and its dynamics
 - Synapse strengths and Hebbian learning
- Information processing
 - Processing of auditory signals in grasshoppers
 - Processing of visual signals in flies

7. Self-organizing maps and associative memory

- basics question:
 - How does our memory complete noisy and incomplete information?
 - How is high-dimensional information represented on the 2dimensional brain cortex?
- Associative memories
 - Spin glasses and the Hopfield model
- Self-organising maps
 - Representation in the visual cortex
 - Self-organising maps
 - Application for statistical learning

8. Evolutionary algorithms

basics question:

- How can we find the highest mountain in a hilly landscape?
- Problems and solutions
- Local versus global optimization
- Gobal optimization
 - Simulated Annealing
 - Genetic algorithms
 - Evolutionary strategies

9. Allometry and bionics

Basic questions:

- How do the shape and physiology of organisms depend on their body size?
- How do the shape of trees reflect their mechanical function?

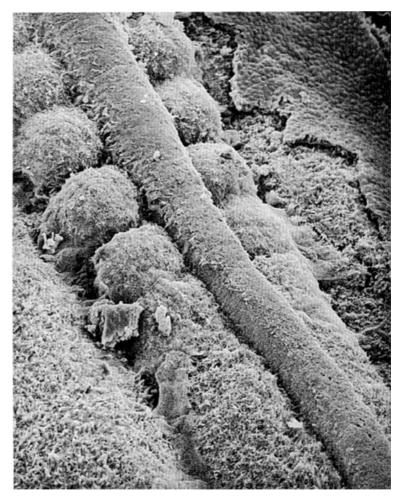
Scaling laws

- Scaling laws and dimensionality analysis
- Fractal shapes
- Allometric relationships

Bionics

- Shapes of healthy and injured trees
- Trees can teach us how to shapes mechanical components




10. Pattern formation

- Basic questions:
 - How do regular patterns in biology arrise?
- Reaction-Diffusion Systems
 - One dimension: Belousov-Zhabotinskii reaction
 - Multiple dimension: Turing patterns

Chicken embryo

S.F.Gilbert, Developmental Biology 8th ed. Movie by Lars Wittler, MPI mol. Gen.