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Abstract

Biological systems of various kinds, from sub-cellular structures like

the respiratory complex up to large mammals, seem to exhibit similar

scaling behaviour, e.g. regarding their metabolic rates. This review intro-

duces a theory to explain these scaling laws, based on the properties of the

underlying biological networks which are needed to distribute resources

throughout the corresponding organisms. This leads to a quantitative the-

ory to describe structure, organization and dynamics of living systems.
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1 Introduction

The philosopher Immanuel Kant (1724 - 1804) once wrote ”chemistry was a
science but not Science... for that the criterion of true Science lay in its relation
to mathematics.” [1] By now, inarguably, chemistry has been elevated to true
Science, due to the development of ”mathematical chemistry” and its blending
with physics (based on, for example, Newton’s laws).
Whereas chemistry stands on firm mathematical foundations, biology is still
lacking in this respect. Although biologists can count on well-founded, general
principles, such as Gregor Mendel’s laws of inheritance, Charles Darwin’s theory
of evolution and the principle of natural selection, these hardly help on bringing
forth quantitative statements about biological systems. Despite the extraor-
dinary progress biology has made during the last decades, the basic question
remains unanswered: ”Do biological phenomena obey underlying universal laws
of life that can be mathematized so that biology can be formulated as a predic-
tive, quantitative science?” [1]
Most would regard this as unlikely, due to the extraordinary complexity com-
monly observed in biological systems. Still, it might be reasonable to conclude
that at least the coarse-grained behaviour of biological systems is obeying quan-
tifiable laws, which help to ”capture the systems’ essential features.” [1] Char-
acterizing these laws would enable biologists to construct simplified, idealized
biological systems, whose average properties can be calculated. These ideal con-
structs could serve as a first point of departure for quantitatively describing and
understanding real biological systems of high complexity.
The high diversity of life makes this search for universal, quantifiable laws a chal-
lenging task. The life process covers more than 27 orders of magnitude in mass,
from DNA molecules to whales and giant redwoods, whereas ”the metabolic
power to support life across that range spans over 21 orders of magnitude.” [1]
Despite this high diversity of forms and dynamical behaviours of biological sys-
tems, one can observe that life tends to reuse the same building components over
and over again to solve its main problem: The economic and efficient distribu-
tion of resources, such as energy, metabolites or information, from macroscopic
sources (e.g. food intake) down to the smallest, microscopic subunits of the
organism (e.g. cells, mitochondria or chloroplasts) This observation makes it
worthwhile to take a look at the scaling behaviour of biological systems.

2 Allometric Scaling Laws

Scaling laws deal with measuring and comparing the relation of scale to the
parameters which can be observed in a certain system. To put it bluntly, if one
considers to construct a ship for sailing, building a little model ship to try out
the construction details first might yield most valuable information about the
behaviour of the full-size ship. In physics, determining the scaling behaviour of
a system is a familiar principle to find out more about its underlying dynamics
and geometry. Not only do scaling laws reflect the underlying generic features
and physical principles of a system (which are indepedent of detailed dynam-
ics or specific characteristics), they also help to reveal scale-invariant quantities,
which usually point to its fundamental constraints. Considering this, it becomes
clear that scaling laws also have relevance for biology.
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The interest in scaling behaviour of biological systems brought forth the idea of
allometry [greek: allos = different; metrie = to measure] [2], which deals with
measuring and comparing the relation of body size to different biological param-
eters. In his work ”Die Abhängigkeit des Hirngewichts von dem Körpergewicht
und den geistigen Fähigkeiten” (1892), the German psychiatrist Otto Snell
coined the classical allometric equation Y = Y0M

b
⇔ log Y = b log M + log Y0,

where Y is some observable, Y0 is the (species-specific) integration constant, M
is body mass and b the scaling exponent. The case b > 0 is denoted positive
allometry, b < 0 equals negative allometry, whereas b = 1 signifies the isometric
case. Therefore, in biology, the observed scaling is a simple power law.

Figure 1: Left: The basal metabolic rate of mammals and birds as described by
Kleiber. Right: The extension of Kleiber’s work. [1]

One of the most studied observables in biology has probably been the basal
metabolic rate, that is, an organism’s energy use in respect to time (usually
kcal/hr). Nearly seventy years ago, the biologist Max Kleiber [3] showed that
the metabolic rate of mammals and birds scales as M3/4, which lead to Kleiber’s
law B ∝ M3/4, where B denotes the metabolic rate. While the masses of the
animals in his original dataset only extend over four magnitudes in mass, in
subsequent studies his finding could be generalized to ectotherms, unicellular
organisms, plants and even to the intracellular level, terminating at the mito-
chondrial oxidase molecules. [1] Therefore, the validity of the metabolic expo-
nent b ≈ 3/4 spans over 27 orders of magnitude in mass (see Fig. 1).
The fact that basal metabolic rate scales as M3/4 not only tells us that bigger
organisms live more efficiently, it also raises the question why biological sys-
tems exhibit quarter-power scaling. A more naive approach might assume that,
if an organism doubles its mass, it also would double its energy requirements
(therewith b ≈ 1) or, following a simple surface-to-volume law from geometry,
b ≈ 2/3. Taking a look beyond metabolic rates, one realizes that, in biological
systems, scaling with multiples of 1/4 seems to be a common principle: Heart
rate scales as M−1/4, life span scales as M1/4, aorta and tree trunk diameters
scale as M3/8, unicellular genome lengths scale as M1/4 and population density
in forests scales as M−3/4. This list may be continued with other examples.
As a consequence of quarter-power scaling behaviour, some invariant quantities
emerge, that is, quantities that do not change dependent on the system’s size.
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For example, due to the fact that life span increases as M1/4 while heart rate
decreases as M−1/4, the number of heartbeats per lifetime remains approxi-
mately invariant (≈ 1.5 · 109). Since hearts are not as fundamental for life as
the molecular machinery of aerobic metabolism, one might state that the num-
ber of ATP molecules produced per lifetime (≈ 1016) is an invariant, as well.
[1] Another example, on a larger scale, can be observed in forest communities,
where population density decreases with individual size as M−3/4, whereas in-
dividual power use increases as M3/4, which leads to an invariant power use by
all individuals in any size class. As mentioned above, these invariant quantities
point to the underlying constraints of the corresponding systems.
Now, how can the predominance of quarter-power scaling in nature be explained
scientifically? In the following chapter, a popular approach to address this ques-
tion by West, Brown and Enquist [4] is presented.

3 A Modelling Approach

The starting point for West and his fellow scientists was the observation that
life, ”highly complex, self-sustaining, reproducing, living structures”, are depen-
dent on effectively integrating and servicing enormous numbers of microscopic
units with resources usually found in macroscopic quantities. To cope with this
transport problem, natural selection has evolved biological networks, such as the
animal circulatory system, the insect tracheal system, the plant vascular system,
the large-scale networks of forest communities, or the microscopical innercellu-
lar networks of metabolism. They further concluded that the explanation to
quarter-power scaling then has to stem from the structural properties under-
lying these biological networks. To characterize these properties they made
further observations, which sum up to three unifying principles: First, in order
to be able to supply the entire volume of the organism, a space-filling, fractal-
like branching pattern is required. That means, though every single unit has
to be serviced, there still has to be enough room for other internal structures
or coexisting networks within the organism’s volume. The issue of fractals is
rendered more precisely later on. Second, the final branch of the network (such
as the capillary in the circulatory system) is a size invariant unit, at least within
the corresponding taxon. And third, the energy required to distribute resources
throughout the network is minimized, which ”is basically equivalent to minimiz-
ing the total hydrodynamic resistance of the system.” [4] According to West and
his colleagues, this energy minimization took place during the course of evolu-
tion. Scaling laws of biological systems then arise from the interplay between
physical and geometric constraints implicit in these three principles.
The idealized nature of this model is reflected in the fact that non-linear effects
such as turbulences in the network flow, or e.g. the deceleration of blood in the
capillaries, are not considered crucial for the overall behaviour of the system.
Still, using these properties, West and his fellow scientists obtain a strict math-
ematical derivation of the metabolic exponent b ≈ 3/4, and therewith deliver an
explanation for quarter-power scaling in nature. This mathematical derivation
is mainly based on the properties of fractals.
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4 A Short Introduction to Fractals

The term fractal was coined by Benoit Mandelbrot in the 1970s [5] and de-
rives from the latin word fractus, which means ”broken”. Indeed, fractals are
fragmented geometric shapes, of artifical or natural origin, whose fragments
consist of smaller-sized copies of the whole. This important property of fractals
is called self-similarity. Fractals usually can be obtained by using a simple re-
cursive mathematical definition.
The dimensionality of fractals does not obey the laws of classical Euclidean ge-
ometry. When a fractal grows in size, this does not necessarily involve the area
it is claiming in space, but its ”grade of fragmentation” within. Therefore, frac-
tals usually exhibit a non-whole numbered dimensionality, which can intuitively
be regarded as an indication of how completely the fractal will fill space. [6]
Today, there are various, specific definitions of fractal dimensionality, and none
of them can be regarded as the universal one.

Figure 2: Evolution of the Sierpinski triangle, recursion depth four [7]

The Sierpinski triangle (see Fig. 2) is a famous example of a fractal with
perfect self-similarity. It can be recursively produced by, in each step, shrink-
ing the original triangle by 1/2, copying it twice, and then placing the new
triangles in such a way that each triangle touches the corners of the two other
triangles. Therefore, in each step k, 3k new triangles with side length (1/2)k

will appear. The dimensionality of the Sierpinski triangle can be obtained by
using its recursive definition:

D = lim
ǫ→0

log N(ǫ)

log 1

ǫ

= lim
k→∞

log 3k

log 2k
=

log 3

log 2
≈ 1.585,

where k is the recursion depth, ǫ is the linear size of self-similar fragments
and N(ǫ) is the number of self-similar fragments needed to cover the whole
original object.

5 Derivation of Quarter-Power Scaling

When West and his colleagues observed the biological networks which evolution
has brought forth, they realized that these exhibit the fractal-like properties de-
scribed above. Fractal concepts in nature are not uncommon, as can be observed
in the growing patterns of plants like ferns or cauliflower. [5] In general, fractal
structures in nature do only show statistical self-similarity, and not the perfect
self-similarity of their mathematical counterparts. Therefore, the pattern of
vacuoles in a leaf resembles the branching pattern of the tree it came from, but
most likely will not represent a perfect copy of it. In addition, the recursion
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depth observed in biological fractals is relatively limited, often terminating after
four or five steps.

Figure 3: The fractal-like structure of the mammalian circulatory system

Still, the means of using fractal-like structures for describing biological net-
works is powerful enough to arrive at a derivation of the metabolic exponent,
b = 3/4. West and his fellow scientists concluded that the metabolic rate should
be equal to the flow rate through the corresponding network. They further ob-
served that the volume of the flow has to conserved on all levels of the network,
which means that, when one is considering the circulatory system as an exam-
ple, the capillaries (that, is the final level of the network) have to offer exactly
as much volume as level zero, which would represent the aorta. The branching
ratio from level to level remains invariant throughout the network, as well as
the size of the final unit of the network, the capillaries. Using this knowledge,
they then made use of hydrodynamic laws to minimize the total hydrodynamic
resistance of their network model. Finally, they arrive at a derivation of the
metabolic exponent b = 3/4, where, intuitively spoken, the three in the numer-
ator refers to the dimensionality of space we live in, whereas the four in the
denominator is due to the increase in dimensionality which takes place during
the fractal-like space-filling (respectively during the branching process) of the
network.
Although this model accepts a variety of simplifications, its predictions are in
good compliance with empirical data, at least what concerns the cardiovascular
(aorta radii, circulation time, total resistance, ...) and the respiratory system
(tracheal radius, volume flow to lung, respiratory frequency, ...). [4] There-
fore it can be regarded as a valuable step towards revealing the mathematical
foundations underlying biology.
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