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Abstract

Allometric scaling relations abound in nature. Examples include the
power law relating the metabolic rate of organisms to their masses and
the power law describing the dependence of the size. In Kleiber’s Law,
the metabolic rate scales as the three-quarter power of body mass. These
relations are the characteristic of all organisms and are here derived from
a general allometric scaling model using the concept of fractals. The cru-
cial point (i.e. the source of the 3/4 scaling exponent) is that however the
size of terminal tubes does not depend on the body size. The model pro-
vides a complete analysis of scaling relations for mammalian circulatory
systems. Furthermore, it predicts structural and functional properties of
vertebrate circulatory and respiratory systems, plant vascular systems,
insect tracheal tubes, and many other distribution networks.
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1 Introduction

Many relations between sizes of nature can be described through scaling laws. In
biology the relationship of body size and metabolisms is a particularly prominent
example of it: Large animals have - relatively seen - a lower metabolic rate than
small animals. The first accurate measurements of body mass versus metabolic
rate in 1932 shows that the metabolic rate R for all organisms follows exactly the
3/4 power-law of the body mass, i.e., R ∝ M3/4. This is known as the Kleiber’s
Law. It holds good from the smallest bacterium to the largest animal (see
Figure 1). The relation remains valid even down to the individual components
of a single cell such as the mitochondrion and the respiratory complexes. It
works for plants as well. This is one of the few all-encompassing principles in
biology.

Figure 1: Allometric scaling of metabolic rate for a selection of homeotherms
(birds and mammals), poikilotherms (fish, reptiles, amphibians, and inverte-
brates), and unicellular organisms. The solid lines all have a slope of .75. (1; 8)

The dependence of a biological variable Y on the body mass M is typically
characterized by an allometric scaling law of the form

Y = Y0M
b (1)

where b is the scaling exponent and Y0 a constant that is characteristic of
the kind of organism. Most biological phenomena scale as quarter rather than
third powers of body mass. For example, metabolic rates B of entire organisms
scale as M3/4; rates of cellular metabolism and heartbeat scale as M−1/4, and
times of blood circulation, embryonic growth and development, and life-span
scale as M1/4. Sizes of biological structures scale similarly. For example, the
cross-sectional areas of mammalian aortas and of tree trunks scale as M3/4. No
general theory explains the origin of these laws.

Then in 1997, a couple of scientists around the physicist Geoffrey B. West
of the Los Alamos National Laboratory in New Mexico successfully derive the
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3/4 power-law using the concept of fractals (a more realistic geometry for or-
ganisms). Fractals are natural or artificial structures or geometrical samples,
which exhibit a high degree of scale invariance and/or self similarity. That is
for example the case, if an object consists of several reduced copies of its. Scale
invariance is a feature of objects or laws that do not change if length scales are
multiplied by a common factor. One of the basic examples of self-similar sets is
the Sierpinski triangle (see Figure 2).

Figure 2: Sierpinski triangle (11)

West et al. (1) developed a quantitative model that explains the origin and
ubiquity of quarter-power scaling. The model predicts the essential features of
transport systems, such as mammalian blood vessels and bronchial trees and
also plant vascular systems, and insect tracheal tubes. It is based on funda-
mental principles or assumptions: At all scales organisms are sustained by the
transport of energy and essential materials through hierarchical branching net-
work systems in order to supply all local parts. These networks are space-filling
fractal-like branching pattern. The terminal branches of the network are in-
variant units. Finally, the energy required to distribute resources is minimized
and this final restriction is basically equivalent to minimizing the total hydrody-
namic resistance of the system. In particular, scaling and their exponents arise
from an interplay between the physical and geometrical constraints inherent in
these principles.

Most distribution systems can be described by a branching network in which
the size of tubes regularly decrease. One version is exhibited by mammalian
circulatory and respiratory systems, another by the the vessel-bundle structure
of multiple parallel tubes, characteristic of plant vascular systems (Figure 3).

2 Derivation of 3/4 Exponent

The circulatory system (or cardiovascular system) is an organ system that moves
substances to and from cells. The main components of the system are the
heart, the blood and the blood vessels, namely, aorta, arteries, arterioles and
the capillaries. In the general case the network has N branching levels from the
aorta (level 0) to the capillaries (level N) (see Figure 3C). A typical tube at the
kth level has length lk, radius rk, and pressure drop △pk (see Figure 3D). The
volume flow rate is Qk = πr2

kūk where ūk is the flow velocity averaged over the
cross section and/or over time. Each tube branches into nk smaller ones and so
the total number of branches at level k is Nk = n0n1...nk. Because the fluid is
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Figure 3: Examples of segments of biological distributed networks: (A) mam-
malian circulatory and respiratory systems composed of branching tubes; (B)
plant vessel-bundle vascular system composed of diverging vessel elements; (C)
topological representation of such networks, where k specifies the branching
level, beginning with the aorta (k=0) and ending with the capillary (k=N); (D)
parameters of a typical tube at the kth level. (1)

conserved as it flows through the system and so the volume flow rate through
the aorta

Q0 = NkQk = NcQc = Ncπr2
c ūc (2)

which holds for any level k. Nc is the number of capillaries and the Qc is the
volume flow rate in the average capillary. The next important assumption is
that the terminal units (capillaries) are invariant, i.e. rc, lc, ūc and △pc are
independent of body size.

Since the fluid (blood) transports oxygen, nutrients, metabolites and other
materials from the aorta to the capillaries for metabolism, the volume flow rate
through the aorta is proportional to the metabolic rate (Q0 ∝ B); thus , if
B ∝ Ma (Recall: Kleiber’s Law; a will be determined later), then Q0 ∝ Ma.
Capillary is an invariant unit (Recall: scale invariance); thus, the number of cap-
illaries (Nc) must scale in the same way as the metabolic rate: if B ∝ Ma, then
Nc ∝ Ma. So, if B ∝ M3/4 then the number of capillaries Nc ∝ M3/4. But the
number of cells fed by a single capillary increases with M (Ncell ∼ M → linear).
This ”mismatch” means that the number of cells fed by a single capillary in-
creases as M1/4 (not Ncell ∼ M ). This is another manifestation that efficiency
increases with size, and important implications for growth and death.

In order to characterize the branchings and to answer the question, how do
radii and length of tubes scale through the network we introduce scale factors
βk = rk+1/rk and γk = lk+1/lk. Because the terminal branches of the network
are invariant units, the network must be a conventional self-similar fractal, i.e.,
βk = β, γk = γ and nk = n (branching ratio), all independent of the branching
level k. For a self-similar fractal, the number of branches increase in geomet-
ric proportion (Nk = nk) as their size geometrically decrease from level 0 to
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level N. Because Nc = nc, the number of generations of branches scales only
logarithmically with size

N =
(a)ln(M/M0)

ln(n)
(3)

where M0 is a normalization scale for M. Thus, a whale is 107 times heavier
than a mouse but has only about 70 percent more branchings from aorta to
capillary.

The volume of fluid in the network (”blood” volume Vb) is

Vb =

N∑

k=0

NkVk =

N∑

k=0

πr2
klknk

∝ (γβ2)−NVc (4)

where the last expression reflects the fractal nature of the system (Vk ≡ volume
of tube and Vc ≡ volume of average capillary). From assumption that capillaries
are invariant units, it follows that (γβ2)−NVc ∝ M . Using this relation in Eq.
3 then gives

a =
ln(n)

ln(γβ2)
(5)

To understand or to set the scaling exponent ”a” it requires knowledge about
the scale factors γ and β. The condition, that the fractal be volume-preserving
from one generation to the next, can therefore be expressed as Nkldk ≈ Nk+1l

d
k+1,

where ldk is the d-dimensional volume of space filled by branch at size lk. This
relation gives

γk =
lk+1

lk
= (

Nk

Nk+1

)1/d =
1

n1/d
(6)

showing that γk ≈ n−1/3 ≈ γ (for d=3) must be independent of k. The 3/4
power law arise in the simple case of the classic rigid-pipe model, where the
sum of the cross-sectional areas of daughters branches equals that of the parent,
so πr2

k = nπr2
k+1

, where r2
k ≡ x-sectional area of parent branch and r2

k+1
≡

x-sectional area of each daughter. Thus,

βk =
rk+1

rk
=

1

n1/2
= β (7)

independent of k.

When the area-preserving branching relation, β = 1/n1/2, is combined with
the space-filling relation, γ = 1/n1/3, Eq. 5 yields a=3/4, so B ∝ M3/4,
where ”3” represents the dimensionality of the space and ”4” (3+1) increases
in dimensionality due to fractal-like space filling.

3 Further Scaling Laws

There are many other scaling laws. For example, for the aorta, the radius

r0 = β−N rc = N
1/2
c rc and the length l0 = γ−Nrc = N

1/3
c lc, yielding r0 ∝ M3/8

and l0 ∝ M1/4. The hydrodynamic resistance of the network is proportional
to 1/M3/4. This means that total resistance decreases with size (Small may be
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beautiful but large is more efficient!).

The mammalian respiratory system is quite similar to the circulatory sys-
tem. For instance, the tracheal radius is proportional to M3/8 (like the aorta
radius), the oxygen consumption rate ∝ M3/4 (like the metabolic rate) and the
total resistance of the respiratory network decrease with size, too (∝ 1/M3/4).

The derivation of the a=3/4 law is a geometric one, strictly applying only
to systems like the cardiovascular or respiratory system that exhibits area-
preserving branchings. A further consequence of this property is that the fluid
velocity must remain constant throughout the network and be independent of
size. It follows from Eq. 2. In the idealized vessel-bundle structure of plant
vascular systems, the area-preserving branchings arises automatically because
each branch is assumed to be a bundle of nN−k elementary vessels of the same
radius. Pulsative mammalian vascular systems do not conform to this structure.
So we must look for the origin of quarter-power scaling laws. (1)

There is a more general 1/4 power-law applicable to many physiological
variables y as shown in the table of Figure 4. It seems that all these physiological
variables have something to do with the nutrient distribution networks and
the dimensional dependence. For example, the life span is proportional to the
linear dimension L, and the heart beat rate is related to the inverse L−1. The
other variables simply follow the same 3/4 power-law or L3 as for the case
of metabolic rate. It is obvious that the various physiological variables are
determined primarily by the dimensional dependence.

Figure 4: Examples of quarter-power scaling laws

4 Results and Conclusion

The allometric model of the form Y = Y0M
b (b is the scaling exponent and Y0

a constant that is characteristic of the kind of organism) accurately predicts the
known scaling relations of mammalian circulatory system and the minor variant
of the model describes the mammalian respiratory system, too. (see table in
Figure 5)
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Figure 5: Values of allometric exponents for variables of the mammalian car-
diovascular and respiratory systems predicted by the model compared with em-
pirical observations. Observed values of exponents are taken from (4; 5; 6); ND
denotes that no data are available. (1)

The presented model provides a theoretical, mechanistic basic for under-
standing the central role of body size in all aspects of biology. Non-fractal
systems (e.g. electric motors) exhibits geometric (third-power) rather than
quarter-power scaling. Because the fractal network must still fill the entire
D-dimensional volume. In general case, the scaling exponent a=D/D+1 and
organisms are three-dimensional, which explains the 3 in the numerator of the
3/4 power law. The model can potentially explain how fundamental constraints
at the level of individual organisms lead to corresponding quarter-power allome-
tries at other levels. Organisms of different body size have different requirements
for resources and operate on different spatial and temporal scales, quarter-power
allometric scaling is perhaps the single most pervasive theme underlying all bi-
ological diversity. (1)

Figure 6: Plot with respiration (metabolic rate) against plant mass (3; 7)

A report in the January 26, 2006 issue of Nature indicates that the 3/4
power law is not observed in plants. The new experiment involved 500 individ-
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ual plants, across 43 species, from varying environments, and covering six orders
of magnitude variation in plant mass. It is found that the slope for a plot with
respiration (metabolic rate) against plant mass is close to 1 (see Figure 6). The
differences in the intercepts between the indoor and outdoor groups disappears
if plant nitrogen mass is used instead of the total plant mass. This new result
can be explained by the theory if the metabolic rate of plants is proportional to
L4 so that the metabolic rate is proportional to the body mass. (3; 7)
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