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Abstract

Complex physiological functions of the cell are often carried out by
myriads of molecules that interact with each other in different ways. These
interactions form complex interaction networks whose structure is far from
random. Instead, most of these networks possess certain properties like a
scale-free and small-world nature and are often marked by the existence
of subgraphs that are overrepresented in comparison with other complex
networks. Here, we are going to look at the common global topological
properties of molecular interaction networks, as well as at local architec-
tural features in terms of characteristic network motifs.

1 Introduction

For a long time biologists, while analysing complex physiological processes tak-
ing place in the cell like apoptosis, transcription and translation, were concen-
trated on the meaning of single molecules for the whole physiological process.
Today it is however clear that such processes can hardly be linked to single
molecules, but are rather determined by whole myriads of molecules and the
different functional interactions between them [1]. These complex interactions
form molecular interaction networks, or interaction graphs, where nodes of the
networks represent molecules (genes, proteins, RNA, metabolites) and edges
(links, arcs) link molecules that interact. The simplest example are maybe
protein-protein interaction networks, where nodes stand for proteins and links
between couples of nodes exist if both proteins interact physically. However,
it is also possible to represent more complex functional interactions as edges
of a molecular interaction graph: for example, a metabolic pathway can be
represented graphically by putting links between metabolites if there exists a
biochemical reaction that transforms one metabolite into the other. Gene regu-
latory networks are another class of biological networks, where nodes represent
genes and the existence of a link from gene A to gene B means that the product
of gene A serves as a transcription factor for gene B.

Speaking of networks, different people often imagine different objects. Physi-
cists and electricians would probably imagine networks as regular objects, like
in Figure 1. a), b). Economists probably imagine networks as objects with a hi-
erarchical nature (see Figure 1. ¢). Others may imagine networks as completely
random objects like in Figure 1. d). Biological networks are often very different
than any of the networks shown in Figure 1. a) - d) but still share certain
properties with all of them. Like in the case of other complex real networks



(the WWW, social networks, road or flight maps), the architecture of biolog-
ical networks obeys certain principles. It becomes more and more clear that
studying these principles will lead to better understanding of complex cellular
processes. The terms “Network biology” and “Systems biology”, despite being
relatively young, already occur frequently in modern scientific literature and ev-
idence that more and more biologists are looking away from the single-molecule
reductionism of the past century and towards analysis of molecular interaction
networks that drive major cellular functions.

Figure 1: Various graph shapes: a), b) are completely regular graphs where
all nodes have the same number of interactors; c) is a hierarchical model of

molecular interaction networks as described in Ref [2]; d) is a randomized version
of b) (see Ref [3]).

To analyse the structure of biological networks, one can start from their
global architectural properties and move towards modules and molecules, or
one can analyse their local properties by finding frequent patterns of interactions
and move towards pattern clusters and modules. Here, we are going to discuss
both the ‘top-down’ and the ‘bottom-up’ approaches.

2 Global architectural features of biological net-
works

2.1 The scale-free nature of biological networks

In order to characterize the global topological properties of cellular networks,
we need to introduce some network notions. To start with something simple:
networks can be directed or not, depending on the nature of the interactions
between their nodes. Protein-protein interaction maps are undirected because
the links represent mutual binding relationships. Other interaction networks



like gene regulatory and metabolic networks are directed: edges here represent
a flow of information or mass and most edges do not have counterparts running
in the opposite direction (e.g., if gene A regulates gene B, this does not mean
that gene B also regulates gene A). The degree (connectivity) k of a node A
denotes the number of links between A and other nodes. In the directed case,
one differs between in-degree (the number of edges ending in A) and out-degree
(the number of edges from A to other nodes). See Figure 2. for examples.
Important global properties of undirected molecular interaction graphs are the
average degree (k) (the average of the degrees of all nodes) and the degree
distribution P(k). P(k) gives the probability that a randomly picked node has
k links. In the directed case, there are separate measures for the out-degrees
and in-degrees of nodes.

a Undirected network b Directed network

Figure 2: Examples of a) a directed and b) of a non-directed network. In the
undirected case, the degree of node A is the number of links & between A and
other nodes; in the directed case, one differs between in-degree k;, and out-
degree kout

For decades, molecular interaction networks were considered either com-
pletely regular or completely random. However, the obvious existence of molecules
with a very high number of interactions is a fact that cannot be explained by
either of the two models. In regular networks, all nodes have the same connectiv-
ity. In random graphs, the connectivity of nodes follows a Poisson distribution,
which means that the existence of nodes with an extraordinarily high number
of links is very improbable. Recent studies have shown that in many biological
networks, the degree distribution follows a power law, that is P(k) ~ k=7 with
parameter v being often between 2 and 3. In such networks, most nodes have
a small number of links, but a small number of nodes, called hubs, exist that
have many links. Because in such networks no ‘typical node’ (typical ‘scale’)
exists, the networks are called scale-free. Historically, the scale-free property
was first shown for metabolic networks — in fact, most metabolites participate in
few biochemical reactions, whereas some metabolites like coenzyme A, ATP and
pyruvate participate in a large number of reactions. More recent studies (for
example, see Refs [4], [5]) show that most protein-protein interaction networks
and gene regulatory networks also have a scale-free nature. This is apparent
from Figure 3. that illustrates a protein-protein interaction network of S. cere-
visiae — most proteins interact with a small number of other proteins, but hubs
with many interactions also exist. It is important to note however, that not ev-
ery biological network has a scale-free nature — for example, the transcriptional
regulatory networks of S. cerevisiae and E. coli were shown to possess mixed



scale-free and exponential properties [6].

Figure 3: A protein-protein interaction map of S. cerevisiae, see Ref [4]

Scale-free networks are very robust — they are extraordinarily resilient to
random component failures. Even after a high number of nodes are removed,
the rest are still held together by the hubs so that the network often does
not become disintegrated and can still fulfill its function. As the number of
hubs is relatively very small compared to the number of nodes with few links,
the chance that a randomly removed node is a hub is small. The intentional
removal of hubs, on the other hand, is often critical to the network’s integrity
and proper function — that is, scale-free networks have a high hub vulnerability.
In S. cerevisiae for example, only about 10% of the proteins with less than 5
links are essential, whereas if proteins with more than 15 links are deleted, this
has a deteriorating effect on the yeast’s viability in more than 60% of the cases.

The scale-free nature of complex networks is often a result of two fundamen-
tal processes — network growth and preferential attachment. Network growth is
the process where new nodes join the network over a long time period, and pref-
erential attachment means that new nodes prefer to link to nodes that already
have a high number of edges. Both processes together are probably responsi-
ble for the scale-free nature of most complex networks. In protein interaction
networks, they are likely to have a common origin which is rooted in gene dupli-
cation — genes that are duplicated have identical products that interact with the
same partners, so each protein that interacts with a duplicated gene’s product
gains a new link after the duplication. If the duplication probabilities for all
genes are approximately equal, then proteins with many interaction partners are
statistically more likely to gain new links than proteins with few interactions
(Figure 4.). Gene duplication might not be the only mechanism accounting for
the scale-free nature of protein interaction networks. However, with appropri-
ate adjustments, it is able to explain the power law degree distribution in gene
regulatory and metabolic networks.

Biological networks are not the only class of networks that has mostly scale-
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Figure 4: Schematic representation of the outcome of gene duplication. In this
case, the gene encoding the protein represented as a circle is duplicated and the
product of the new gene has the same interaction partners as the gene that has
been duplicated. Note that the hub (the central protein shown as a hexagon)
gains a link if any of the other proteins is duplicated, but the rectangle — the
protein with a single link — gains a new edge only if the hub is duplicated.

free members — in fact, many complex real-word networks have a power-law
node degree distribution. Examples include the world wide web, electric power
grids and airplane flight webs.

2.2 The small-world effect

Like connectivity measures, path length measures offer a possibility to quantify
and compare topologies of complex networks. The path length [4p5 between
nodes A and B is defined as the number of edges on the shortest path from A
to B. In the directed graph case, l4p is often different than lp4. A measure of
a network’s navigability is the average over all shortest distances between nodes
— the average path length (I).

Typically, regular networks have relatively long average path lengths. This is
generally not true for random networks, where a relatively small number of edges
connect couples of nodes, even if the network has a very large number of nodes.
This phenomenon is observed also in certain classes of irregular but non-random
networks — in fact the phenomenon was first observed in social networks back
in the sixties of the 20" century. Social studies show that in our social world
of over 6 billion people, only 6 friendship relations (“handshakes”) on average
are sufficient to link every two people, an interesting observation known as “six
degrees of separation”. Because these short part lengths make large networks
look small, the phenomenon was called “small-world” effect. Many biological
networks have even shorter average path lengths than random networks, which is
why they are often referred to as “ultra-small-world” networks. In metabolic
networks, for example, 3-4 reactions often suffice to convert one metabolite
into another. This brings a benefit to the organism, because local changes in
metabolites’ concentrations reach the whole network very quickly so the system
can quickly respond to them. For this reason, the ultra-small-world property of
metabolic networks most probably underlies selective pressure, which is why we
observe the same average path lengths in the metabolic networks of a parasitic
bacterium and a large multicellular organism [7].



2.3 Assortativity

In social networks, “famous” people (i.e. people with many connections) often
know each other, which makes social networks assortative. In most molecular
interaction networks, on the other hand, hubs seem to avoid linking to each
other but prefer to link to nodes with few interaction partners. This property
is called disassortativity. The origin of disassortativity in biological networks
remains unexplained.

2.4 Modularity

Cellular functions are often carried out in highly modular manner. This means
that functional modules of highly interconnected molecules control complex cel-
lular functions. A measure of the modularity of a network is the average cluster-
ing coefficient (C), which can be explained as follows: if nodes A and B are the
only ones connected to a node C, and if there is a link between A and B (form-
ing a triangle of links between A, B and C), then C has a clustering coefficient
Cc = 1 because all its neighbors are linked to each other. If no neighbours of a
node are linked to each other (that is, if there are no triangles a node is part of),
then the clustering coefficient of the node is 0. Each node in a network has a
clustering coefficient between 0 and 1 which depends on the fraction of couples
of linked neighbours of the node. The average clustering coefficient (C') of a net-
work is the mean of the clustering coefficients of all nodes. Biological networks
often have a significantly high (C) compared to randomized networks, which
indicates their modular nature [2]. The observation is consistent with the fact
that in the cell, certain molecules interact to govern certain processes and thus
form interaction subgraphs (modules) that are relatively but yet not completely
independant of other subgraphs governing other processes. For example, the
glycolysis pathway is the one that converts glucose to pyruvate and pyruvate is
used in the TCA cycle to obtain energy, but both pathways are linked via ATP
and pyruvate. This modularity is the reason why complete cellular interaction
networks (like the complete metabolism of an organism or the complete map of
protein-protein interactions) are often viewed as “networks of networks”.

2.5 Network models

As mentioned earlier, the earliest models of biological networks were completely
random or completely regular. Network models with a power law degree dis-
tribution are nearer to reality as they reflect the scale-free and small-world
properties of biological networks. Subtly constructed hierarchical models, how-
ever, are even closer to real molecular interaction networks as they are able to
reflect their scale-free, small-world and modular properties (see [2]).

3 Local architectural features of biological net-
works

Biological networks can be approached either by describing their global topolog-
ical properties, as we saw above, or by describing the local properties in terms



of subgraph analysis. Subgraphs are subsets of nodes and the according interac-
tions between them. Those subgraphs that appear in a network at significantly
higher numbers than in randomized versions of the same network are called net-
work motifs and are central to the bottom-up approach to biological network
analysis because of their role as elementary units determining network function.
As Figure 5. shows, different classes of complex networks are signed by the pres-
ence of different motifs. For example, the feed-forward loop motif is significantly
overrepresented in gene regulatory networks and neuronal nets. In gene regula-
tory networks, this means that some gene X regulates two other genes Y and Z
and that gene Y also regulates gene Z. The functional role of feed-forward loops
in gene regulatory networks is still not completely understood; however, there
is evidence that feed-forward loops function as sign-sensitive delay elements. A
motif that is typical for gene regulatory networks apart from the feed-forward
loop is the bi-fan motif, where two genes have two common regulators.

An interesting empirical observation is that motifs usually do not appear
isolated but tend to form motif clusters, that is, different occurrences of a motif
often share edges and / or nodes.
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Figure 5: Network motifs from several biological and technological networks [8].
Niyeqr 18 the observed number of appearances of a motif in the real network and
Nyand is the number of appearances of the same motif in randomized versions
of the same network.



4 Discussion

Network biology is a relatively new field of study concerned with the topological
properties of biological networks. Network biologists approach the cell from the
top down, starting from the networks’ global properties such as their scale-free,
small-world, hierarchical nature and moving towards modules and molecules, or
from the bottom up, starting from interaction motifs and moving to motif clus-
ters and modules. Results of both approaches support the thesis that network
topology is far from random, and deeply linked with network function. Although
network biology has witnessed remarkable progress in the recent years, it is still
in its infancy, and is likely to involve enormously in the next few decades. How-
ever, we have to mention here that biological systems can hardly be understood
by analysing interaction network topologies alone. Instead, one should also con-
sider the system’s dynamics. For example, not all metabolic reactions in the
cell take place at the same time and at the same rate — a fact that can perfectly
be expressed in terms of network dynamics but not in terms of topology alone.
Integrating our knowledge of topology and dynamics of molecular interaction
networks can definitely help us to better understand the cell — the unit of life
on Earth.
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