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1. Introduction on pattern formation 
 

 

This elaboration of my talk on pattern formation tries to cope the basic concepts of the 

Turings model (A.M. Turing, 1952) on pattern formation, which are partial differential 

equations describing the reaction and diffusion behaviour of chemicals. It will introduce the 

concept of the breakdown of a former homogenous and symetrical system, what Turing calls 

himself the breakdown of a prepattern. Therefore it will deal with the mathematical terms of 

stability analysis of a so called stationary state. Under particular circumstances such stable 

systems are capable of generating stationary patterns of finite characteristic wave lengths even 

if the system starts from arbitrary initial conditions. What Turing showed is that this 

characteristic behaviour of the system is determined intrinsically by the reaction rates and by 

its diffusion rates and not by external constraints. Alan M. Turing investigated the chemical 

basis of morphogenesis and showed that the coupling of nonlinear kinetics with diffusion may 

lead to spatial differentiation, i.e. to structures denoted later as Turing patterns. Turing 

patterns have been shown to have counterparts in natural systems and therefore could be a 

plausible way to model the mechanicsm of biological growth(Gierer & Meinhardt, 1972). 

 

2. Instability-breakdown of symmetry and homogeneity 
 

 

Turing’s inspiration were natural phenomena, such as gastrulation, describing the early phase 

in the development of an animal embryos or phylotaxis the growth of plants. Natural Systems 

exhibit an amazing diversity in both living and non living systems. Trees and plants growing 

from a single seed can show extremly complex organization. Also the complex development 

of mammals starting from a single fertilized egg cell. Such systems although originally quite 

homogenous develop a pattern due to an instability of the homogeneous equilibrium, triggered 

of by random disturbances. Turing proposed that the mathematical model describing a system 

of spontanously spreading and reacting chemicals, so called morphogens could give rise to 

stable stationary concentration patterns of fixed wavelength, while an additional driving force 

like diffusion might have relevance in describing the growth of a biological form. In order to 

understand the concepts of a driving force breaking the symmetry, a very demonstrative 

example can be used.  

A metal stripe being thin and wide, is fixed on a peace of wood with a certain weight 

attached. If we snip with the finger against the strip, small virbations occur, but the stripe 

returns in its orignial stable state (standing straight). The attached weight can be moved along 

the vertical axes of the stripe. It is easy to imagine, if the weight is moved upwards the 

vertical axes, there is a certain height hc, where the metal stripe standing straight (former 

steady state) is spontanously bend in one of the directions of the two of its thiner axes. For 

illustration see figure 1. 



 

Figure 1 A metal stripe undergoing a spontaneous symmetry breaking, after the attached weight is moved 

upwards a certain threshold. This example is used to clarify the concept of a driving force(e.g. gravity) 

inducing a system to loose its stability. 

 

So the driving force in this case is the gravity affecting the system. The small perturbations 

within the system Turing had in mind are in this case small vibrations of the metal stripe, that 

have a effect on the stability of the system, if gravity is present. But if gravity is absent those 

small forces have no influence on the stability of system itself, the metal strip is not even 

bend. Turing investigated this local instabilities using a reaction-diffusion system, where the 

small vibrations on the metal stripe are descibed by small perturbation in the concentration of 

two chemical substances called morphogens and a set of chemical reactions between the 

morphogens, and the physical laws of diffusion being the driving force on the system 

inducing a new globally stable pattern.  

In this system a new structure emerges during development, a localized high concentration of 

a morphogen is first formed, while in turn it initiates the determination and differentiation of 

that particular area ( a area of instability), so spatial differences are generated from quite 

homogeneous conditions.  

In this case the morphogen distribution may be considered as the pre- or primary pattern 

which precedes the structure to be formed. A prepattern can determine more than on structure, 

if the morphogen is not used for an all or none decision, a long ranging signal exists which 

can spread out from a small group of cells the “organizing region”.  

To simplify the idea of reaction kinetics Turing used the analog example of the world of “the 

cannibals (C) and the missionaries (M) (J. Swintons, 2004). He was setting up following rules 

using partial differential equations to describe the growth rate of the systems components. 

Missionaries and cannibals live on the island. Missionaries are all celibate and thus dependent 

on the recruitment of the outer world as its members gradually die. 

Cannibals also die, but can also reproduce, so that the population naturally increases. 

However when two missionaries meet a cannibal, the cannibal is converted to missionary 

status. This tension between production and transformation means that a balance is reached 

when both populations are mixed together. If this balance is disturbed by a small amount of 

noise, the tension will act to restore the balance: the system is stable. 

 

3. Stability of a stationary state 
 

 

The concentration over time of missionaries and cannibals is formalized by equation I and II, 

where a is the growth rate of the missionaries, the growth rate of the cannibals is expressed by 

the parameter b. The expression M square times C expresses the “kinetic” rule that if 2 



missionaries meet on cannibal a missionary is recruited, therefore this term is added to the 

equation expressing the missionary concentration und subtracted from the equation expressing 

the cannibal change of concentration at time t. A more general form is given by equation III 

with the vector w (M,C) of the concentration coefficients over time t and a function F 

expressing the reaction kinetics f(M,C), g(M,C) and θ representing the parameter set. 
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The concept of stability is intuitive: If we disturb the system by a small perturbation a stable 

system evolves to the stable stationary state when time tQ1. 

Stationary states are determined by setting F (wo, θ) = 0, and stability analysis can be 

performed by looking at the properties of the eigenvalues of the Jacobian Matrix A. 
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A is given by .the partial derivatives of the functions of the reaction kinetics f and g. In the 

case of our example of the “Missionaries and the Cannibals” we obtain the eigenvalues  

λ1= -0.499 + i 0.866 

λ2= -0.499 + i -0.866 

by setting the parameters a and b of equation I and II equal to 1. If one or more real parts of 

the eigenvalues λi are positiv the system gets unstable. We get a stable steady state at 2.5 

missionaries by 1 cannibal since the real part of the complex eigenvalue a<0. So we know 

now that Island is in a stable state and it is resistent to small pertubations. But since Turing 

was concerned with the onset of instabilty he added the concept of diffusion to the equations 

of the reaction kinetics. Achiving a system with local instabilities, but globaly stable. To 

understand the switch between unstable and stable states, the concept of bifurcation is 

introduced. In the example of the metalstripe with the adjustable weight, the point of 

bifurcation is the height hc, where the stable steady state is bifurcating into two possible stable 

steady states (see figure 2 B). 

 

Figure 2 Saddle Node Bifurcation, B Supercritical Pitchfork Bifurcation, C Hopfbifurcation are reached 

by propagating the bifurcation parameter θ. (Dotted and straight lines indicate unstable and stable states) 

 



4. Diffusion enhances and suppresses induced local instability 
 

 

Now an extended chemical system is discussed, where diffusion enables the transport of 

matter and represents the only kind of spatial coupling. An inhomgenous distribution of  

concentration of the species M leads to a flux J which is proportional to the diffusion-gradient 

J =@D5M  of the missionaries in our example. Fick’s second law simplifies to the diffusion 

equation since it is assumed that D is not space dependend we obtain the diffusion equation 
∂M

∂t

ffffffffffff
= D52 M , which is added to the term of the reaction kinetics. 
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Equation 3 In III the D denotes the matri x with the diffusion coeffients 

 

In the example of the cannibals and missionaries Turing described the process of diffusion. 

with the picture of the two populations, instead of mixing completely together, are spread out 

in a thin ring around the rather narrow beach of the island. Now individuals react (that is, 

reproduce or convert) only with their immediate neighbours, but they also move around at 

random in a diffusive way. Moreover the members of the two populations move at different 

speeds: the missionaries have bicycles and move faster, denoted by d in equation I.. This is 

enough to destabilize the system. If there is at any point a small excess of cannibals, say, then 

this will be followed by excess 'production' of more cannibals, and then of more missionaries 

(since they have more targets for conversion). Without the spatial dimension the extra 

production of missionaries would in turn reduce the cannibal excess and the system would 

return to balance. But because the missionary excess is transported away more quickly, a 

pattern develops in which there is a near excess of cannibals and a far excess of missionaries. 

Moreover the distance between these zones of relative excess is determined by the interaction 

between the reaction and the diffusion: a length scale, which is what is required for the 

emergence of pattern from non-pattern, has emerged from the dynamics. 

The important point here is that the diffusion rates of the two reactans have to differ, so that a 

spatio-temporal pattern evolves. 

 

The pattern which evolves by adding the different diffusion rates to the term of the raction 

kinetics of the populations has a certain wave length depending on the parameters of the 

reaction-diffusion system. a characteristic polynom of this diffusion-reaction system. 
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Bw0 = 0, w0 being the vektor of the initial condtions f(M0,Co) at the 

equilibrium and D the matrix with the diffusion parameters. For k =0 the influence of the 

diffusion term disappears, but the stability of the reaction-diffusion has to be investigated by 

varying k. The dispersion-relation can be described with λ k
` a
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2
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A where k is the wave 

vector number and λ is the growth rate. This relation can predict the unstable wave numbers. 

The dispersion analysis looks for the wave number of unstable modes kc. 

 



 

Figure 3 (a) is the determinant of the Jacobi Matrix of our diffusion reaction system, with respect to the 

wavenumber k, b) describes the area of unstable wavenumbers with respect to the dispersion relation λ(k) 

 

5. Examination of Pattern Development 

 

 

 

Figure 4 This ring represents the emergence of a pattern on the system. the black parts on the right hand 

side can be seen as high cannibal concentrations, with k-mode = 4 

This simple description of the Turing instability explains where a characteristic length scale 

emerges, but things are a little more complicated. For example, given that all waves of the 

maximal wavenumber will be growing at an equal rate, and that perturbations are equally 

likely to occur at all places round the ring, the model can't predict the phase of the pattern: 

that is it might say there will be four troughs around the ring but it can't say (figure 4) where 

they will begin.  

It explains that the number of waves k on the system are dependend on the parameters of the 

diffusion-reaction system. Another complexity is that the simple model predicts that patterns 

will go on growing forever: in order to prevent this we have to change the conditions after a 

while. These and other questions made it necessary for Turing to introduce the notion of 

'cooking', this is simply increasing the dispersion relation, so that the system moves from 

having no unstable mode, to having a stable one. In two dimensions, what happens to the 

dispersion relation? For a one dimensional lattice, we saw that patterns on rings could be 

described by wavenumbers. Thus the analogue in two-dimensions of the dispersion-relation is 

the dispersion plot (Figure 3).  

 The asumptions which lead to a stable steady state in the absence of diffusion are:  

- fM + gC <0; fMgC – fCgM > 0 ; 

 

The wavenumber of unstable steady states can be obtained by  
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it yields for the stationary stable state to be unstable in presence of diffusion processes 

additional rules have to hold 

- fM > 0, gC <0  

- DM > DC  

- (fMDC + gMDM)² > DM DC (fMgC + fCgM) 

 

(Hu-Script, 2000) 

 

5. Summary and Outlook 
 

 

Turing showed in his paper 1952 that diffusion can produce homogeneous spatial patterns. 

Instability induced by diffusion is called a Turing instability, which leads to a new Turing 

pattern, if the constraints of the dispersion relation hold and effect the real part of the Jacobian 

matrix Re{λ(k)} > 0 of the reaction-diffusion system.  

The linear analysis predicts which wave numbers become unstable in the system, but does not 

give any insight into symmetries that might arise as a result of nonlinear coupling of the 

unstable wave modes. Typically, Turing systems (and also many other physical systems) 

exhibit stripes and hexagonally arranged spots, but also other morphologies such as rhombic 

arrays and labyrinthine patterns have been observed in two dimensions (Kapral and 

Showalter, 1995). The question is wether complex pattern can evolve out of a reaction-

diffusion system descibed by Turing. An activator inhibitor system is conceivable (Koch- 

Meinhardt, 1994) with an short range activator ( high diffusion rate) and a longe range 

inhibitor (low diffusion rate).This does describe the nature of a chemical system, although 

other systems are imaginable where a negativ concentration could last. Numerical simulations 

on the Gray–Scott Model revealed a variety of spatio- temporal patterns (J.E. Pearson,1993). 

 

Figure 5 Gray-Scott Model developing a great variety of patterns, based on Tourings diffusion reaction 

system. 
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