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Abstract

Optimization is an important task in physics, engineering and informatics especially in
bioinformatics. It allows the development of optimal solutions to a given problem. However,
there are different problem instances which have to be treated differently. This paper will give
an overview over these different instances and where they occure. Moreover the alternative
ways to treat them correctly will be explained. In the end, a slight introduction is given to
Gene Expression Programming [7].

Introduction

Optimization problems occure in physics (e.g. minimizing the internal energy of molecules), in
engineering (e.g. chip design) [10][8] and in informatics (Travelling salesman problem) especially
bioinformatics (e.g. micro array analysis). Each problem instance can be reformulated as target
function which has to be minimized (or maximized):

f : RD → R (1)

Unfortunately, these target functions and the corresponding function value can have different fea-
tures. Target functions can differ in their dimensionality, i.e. the number of variable parameters
where the parameters can be continous or discrete. Additionally, target functions can be differ-
entiable (or not) and/or constraints are given so that only a given region of the solution space is
of interest. In contrast, the function value is 0-dimensional and also can be continous or discrete.
However, the target function can be multi-modal so that there can be several local optima and one
global optimum.
Clearly, all the above mentioned classes of target functions have to be treated differently, since a
method that works perfectly on differntiable target functions need not work on target functions
with discret function values. In the following the different classes and a corresponding method for
optimization are presented.

Optimization of differentiable target functions

Target functions must be two time differentiable at every point so that the gradient at a given
point and the corresponding bending can be calculated. The gradient is given by the first partial
differentiation:

f ′(x) =
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where x is a vector with D elements representing the parameters. Since it is not known if an
optimum is found in the general situation even if a parameter vector with f ′(x) = 0 is found (e.g.



saddle point), the second partial differentiation is needed which is given by Hessian matrix:
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where x again is a vector with D elements representing the parameters. By means of the two
differentiations the optima can be calculated directly if the target function is quadratic. In general
this is not possible and alternative methods have to be used which work iteratively. There are
many of those methods that find optima by means of the two differentiations [8]:

• Gauss-Newton

• Fletcher-Reeves

• Davidon-Fletcher-Powell

• Broyden-Fletcher-Goldfarb-Shanno

• Levenberg-Marquardt

However, the simplest gradient based method, Steepest Descent, optimizes without the second
partial differntiation. Therefore, f ′′−1 is replaced by the identity matrix so that the corresponding
iteration looks as follows: xn+1 = xn−γ ·g(xn) where γ defines a step size. However, some problems

Figure 1: Path of the steepest descent method [1]

are left open by the gradient based optimization methods: First, these methods are useless if the
solution space of the target functions is discrete. And second, in fact these methods guarantee to
find an local optimum but they do not guarantee to find a global one.

Optimization of non differentiable target functions

Since the differentiable methods do not work on discret target functions, other methods are needed.
One class of methods is based on a simplex. In geometry, a simplex or n-simplex is an n-dimensional
analogue of a triangle [2]. Specifically, a simplex is the convex hull of a set of (n + 1) affinely
independent points in some Euclidean space of dimension n or higher [2]. One example for simplex
based methods is the Nelder-Mead method [3]. This method works as follows on a target function
with two parameters [8] :



(1) sample randomly three points into solution space

(2) sort the three points by the function value

(3) reflect the worst point at the line generated by the other two

(4) try to improve:

(4.1) if reflection returns function value better than the other three go one step further into
the same direction assuming that further improvment is still possible (expansion step)

(4.2) if expansion succeeds, add corresponding point to set of three points and drop the worst
point from this set

(4.3) if expansion fails, add point returned by the reflection to the set of three points and
drop the worst point from this set

(4.4) if reflection fails but returned function value is still better than the worst of the three
others, add it this point to the set and drop the worst point

(4.5) if (4.1) - (4.4) fail, shrink the simplex

(5) go to (2) or finish iteration if some criterion for finishing is reached

Point (4.5) guarantees that the simplex is able to find optima for which the starting simplex is too
unsophisticated. Clearly, this method works on continous or discrete target functions but does not
solve the problem of multi-modal target functions.

Simulated annealing

Simulated annealing (SA) is a generic probabilistic meta-algorithm for the global optimization
problem, namely locating a good approximation to the global optimum of a given function in a
large search space [4]. This search method is inspired by metallurgy where annealing describes
the process after hardening the metal. Hardening is done by fast cooling down the metal. By
this procedure, the atoms of the metal can not reach the configuration of minimized energy of the
system since they are ”frozen” at their current configuration. Such a configuration contains a lot
of defects that can provide an early breaking of the metal. Because of that, the metal is heated
again (but not melted) and slowly cooled down (annealed). This annealing procedure makes it
possible to get from the current, local stable configuration of atoms and corresponding energy
of the system to configurations with higher energies. From these ”higher” points the annealing
procedure finds other local minima or even the global minimum. Clearly, accepting worse energies
of the system as new configuration is not arbitrary and in physics this is described by a probability
distribution dependent on the temperature. Finally, the atoms end up in their configuration with
the minimal energy of the system which is mostly crystal like. The probability to observe a given
state (configuration) j with energy niveau Ej is described by the Boltzmann distribution [5]:

P (Ej) =
exp

(
−Ej

kBT

)

Z(T )
(4)

where kB is the Boltzmann constant, T the temperature and Z(T ) the so called partition function:

Z(T ) =
∑

j

exp
(−Ej

kBT

)
(5)

where the partition function is a normalization factor for the Boltzmann distribution. In 1953,
Metropolis et. al. [9] developed a simple algorithm which provides an efficient simulation of
a collection of atoms in equillibrium at a given temperature. The algorithm computes a small
displacement for an atom and calculates the corresponding energy difference in the system, ∆E.
If ∆E is less than 0, the new configuration is accepted and the new configuration of atoms is used
as starting point for the next iteration step. If ∆E is bigger than 0, i.e. the energy of the system



increases, the acceptance is treated probabilistically. The new, worse configuration is accepted
with the probability [10]:

P (∆E) = exp
(−∆E

kBT

)
(6)

Thus, the system evolves into a Boltzmann distribution [10].
The method described by Metropolis et. al. [9] can be easily applied on arbitrary target functions
where the atomic configuration is represented by a given set of parameters and the ∆E is repre-
sented by the difference between the function values of two different parameter sets. Additionally,
the Boltzmann constant has to be changed to a problem dependent control variable. The tempera-
ture T is equally treated as in physics or in the algorithm described by Metropolis [9][10]. Since the
problem dependant control variable, corresponding to the Boltzmann constant, has to be chosen
very carefully, the whole annealing schedule has to be chosen carefully. I.e. if the temperature T is
lowered to fast, the algorithm would behave like a local search algorithm and would be caught in
a local optimum. If the temperature is lowered to slow, the running time of the algorithm might
last too long. However, finding the optimal annealing schedule is an optimization problem of an
optimization problem.

Evolutionary algorithms

Evolutionary algorithms (EAs) are search heuristics for global optima. There are two classes of
algorithms, evolution strategies and genetic algorithms. Both classes are inspired by biology. It is
assumed that living organisms adapt to the environment perfectly and that evolution is able to find
local and global optima by mutation, recombination and selection. On the one hand, evolutionary
strategies were developed by Rechenberg and Schwefel and are applicable to continous target
functions with continous parameter representation (float, double) [8]. On the other hand, genetic
algorithms were developed by Holland and Goldberg and are applicable on combinatorial problems
with discrete (binary) representation of parameters [8]. Mutation mostly consists of adding a
random vector to the offspring vector, where recombination can be done directly by exchanging
elements of the parental vectors. How mutation and recombination are realized differs from method
to method but are always directly inspired by biology. However, if the parameter representation of
an evolutionary strategy can be transformed to a discret representation, the evolutionary strategy
is converted to an genetic algorithm (and vice verca) [8].The meta algorithm for an evolutionary
algorithm is given in Figure 2.

Figure 2: Meta-algortihm for evolutionary strategies and genetic algorithms [8]



target f. optimum
method continous discret varying local global # of f. values running time
steepest d. yes no parameters yes no single fast
simplex yes yes parameters yes no single/multi fast
simulated ann. yes yes parameters yes yes∗ single slow
EAs yes yes parameters yes∗ yes∗ multi slow
GEP no yes function yes no single fast

Table 1: Advantages and disadvantages of the single methods (∗ but not guaranteed)

Gene expression programming

Gene expression programming (GEP) [7] is a very new method for optimizing whole functions or
programs. In contrast to the above mentioned methods, gene expression programming is more
similar to polynomial interpolation: given some data, calculate a function that represents this
data with smallest distance. Optimization of these functions again is inspired by biology and
work similar to the evolutionary algorithms. Functions are represented as genes which can be
reformulated to expression trees (ETs). Genes are ”simple” strings of operators and variables
where the corresponding expression tree defines how the function must be evaluated. Moreover,
these genes can be organized in whole chromosomes where the single genes respectively functions
are combined by other functions (e.g. ”if”). However, since this method is relatively new the
interested reader is referred to the original paper [7].

Summary

In Table 1, the advantages and disadvantages of the single methods are summarized. Additionally,
there is a general proceeding for optimization:

• try as much algorithms as possible which are applicable to the given problem

• try different sets of parameters of the algorithm instead of default values

– annealing schedule

– population size (≥ 10x number of parameters)

• start algorithm at different coordinates of solution space (≥ 10x)

However, the methods presented in this paper give only a slight overview about possible optimiza-
tion methods. There are new heuristics inspired by biology for the search in high dimensional
solution spaces (e.g. Ant colony optimization [6]) which are not presented in this paper.
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