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Abstract

Activator-inhibitor systems are able to explain many pattern form-
ing processes in nature. The interaction of these two substances can be
described by two simple differential equations that incorporate the influ-
ence of the activator and inhibitor on each other as well as production,
degradation and diffusion processes. A set of differential equations of
an activator-inhibitor system is presented and the systems behaviour is
described. Finally, an alternative reaction-diffusion model was used to
simulate pattern forming processes.

1 Introduction

Pattern formation is a very important process in the development of all organ-
isms. For example the colony formation of small marine animals is triggered
by anactivator-inhibitor system. Furthermore, the regular spacing of leaves or
the the ordering of stomata on a leaf can be explained with the help of such
interacting system.
There exist different mathematical models that are able to simulate such pro-
cesses. These models consist of at least two substances that influence each other.
The system has to be globally stable and locally unstable to form patterns. In
order to achieve theses characteristics the diffusion plays a very important role
as it is shown in the following.

2 Behaviour of Activator-Inhibitor Systems

An activator-inhibitor system consists of two substances that act on each other.
The activator stimulates its own production via autocatalysis as well as the
production of the inhibitor. The inhibitor in turn represses the production of
the activator (see figure 1). In addition, the inhibitor diffuses more rapidly than
the activator such that patterns of activator and inhibitor concentrations can
arise.

Figure 2 demonstrates the behavior of an activator-inhibitor system after an
initial perturbation. Two cases are considered: 1) An equal activator increase
at all positions of a linear array of cells. 2) A random perturbation in just a
few cells of the array. Both situations will lead to different behaviours of the
system.
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Figure 1: Activator-inhibitor system. The activator A stimulates its own pro-
duction as well as the production of inhibitor H. H represses the production of
A and diffuses more rapidly than A. Figure taken from Meinhardt [?].

Figure 2: Concentration time profile of activator and inhibitor after some pertur-
bation in a linear array of cells. Blue: Equal activator increase at all positions.
Red: Activator increase in just a few cells. Figure taken from Meinhardt [?],
modified.
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Equal activator increase The equally increased activator concentration in
all cells stimulates the further production of activator but also the production
of inhibitor. Since neither activator nor inhibitor are able to diffuse into the
surrounding because of the equal concentrations in all cells the inhibitor is able
to overcome the activator such that after some time activator and inhibitor turn
back to their steady state concentrations.

Activator increase in few cells If the activator increase occurs just in a few
cells the production of activator and inhibitor is stimulated in these cells, too.
Since the inhibitor diffuses more rapidly than the activator most of the inhibitor
in the cells of initial perturbation is lost into the neighbourhood. Therefore the
activator production is no longer repressed at this point but in the rest of the
field. At the point of initial perturbation the activator can increase further and
further until the gain of activator by production is equal to the loss of activator
by diffusion and degradation. Finally the cloud of inhibitor around the activator
maximum stabilizes the pattern.

2.1 Mathematical Example of an Activator-Inhibitor Sys-
tem

An example of a mathematical description of an activator-inhibitor system is
given in the following:

da

dt
=

pa2

h
− µa + Da

d2a

dx2
(1)

dh

dt
= p′a2 − νh + Dh

d2h

dx2
(2)

where da
dt , dh

dt determine the change of activator and inhibitor in time. p and p′

denote the respective production rates, µ and ν the degradation rates. The last
terms of the above equations determine the diffusion where Da and Dh are the
diffusion constants.
To have a closer look at the systems behaviour we set all the parameters to
unity and assume that no diffusion occurs. In order to analyse the change of
activator in time we first assume the inhibitor concentration to be constant and
equal to one. Therefore we get

da

dt
=

a2

1
− a = a2 − a (3)

There exists a trivial stable steady state at a = 0 and a second unstable steady
state at a = 1.
The change of inhibitor in time

da

dt
= a2 − h (4)

possesses a steady state at h = a2. If we insert this result in the activators
differential equation we get

da

dt
=

a2

a2
− a = 1− a (5)
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and the unstable steady state at a = 1 becomes stable.
At points where a stochastic increase of activator occurs the inhibitor concentra-
tion can be assumed to be constant because of the more rapid diffusion. In these
cells the activator can increase further and further (unstable stead state). Since
the inhibitor diffuses into the surrounding its concentration at these positions
cannot be assumed to be constant. In contrast, the inhibitor overcomes the
activator there (stable steady state in the presence of inhibitor). Since the acti-
vator cannot increase to infinity because of degradation and diffusion a globally
stable pattern arises finally.

3 Role of Activator and Inhibitor Range in Pat-
tern Formation

In nature many processes are triggered by the rise of a certain substance above
a threshold concentration. This substance can be for example the activator, i.e.
if the activator reaches a certain concentration the formation of a new leave or
the formation of a hair is triggered. It is obvious that an organism is interested
in forming multiple activator maxima in order to grow leaves or hairs.

Range of a substance The range of a substance is defined as the mean
distance between production and decay of this substance, i.e. the range is a
measure of how far this substance can diffuse.

Multiple activator maxima can arise if the size of the simulated field is larger
than the range of inhibitor. Otherwise the inhibitor would repress the formation
of a new activator maximum. In addition, a small perturbation, i.e. an increase
in activator or a decrease in inhibitor, outside the inhibitor range is needed.
The influence of the range of activator and inhibitor, respectively, was studied
in marine hydroids. Marine hydroids are small animals that form colonies by a
branching network of stolons. These are hollow tubes which are growing until
they connect in order to build the network. The signal for the formation of
a new stolon is triggered by an activator maximum. It was observed that all
stolons have a minimal distance to each other and that this distance corresponds
to the range of the inhibitor.
Plickert [?] studied the influence of the inhibitor and activator range on the
development of new stolons in detail (see figure 3). The formation of a new
activator maximum can be stimulated by tapping the animal on its surface. If
two activator maxima are induced in close proximity to each other, i.e. within
the range of the activator, one activator maximum exactly in between them
can arise (figure 3 a)). The activator of both induction points diffuses into the
surrounding. In the middle of the two induction points the inhibitor is not able
to overcome the activator. In the second case (figure 3 b)) the second induction
point is outside the activator but within the inhibitor range of the first one.
Therefore just one activator maximum can arise either at the position of the
first or at the position of the second one because the inhibitor of one activator
will overcome the other activator maximum. In figure 3 c) the case in which
the two induction points are outside the inhibitor range is shown. Here both
activator maxima can arise.
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Figure 3: Formation of activator maxima in dependency of the distance of the
two induction points [?]. (a) The second induction point lies inside the activator
range of the first one. One activator maximum in the middle of the induction
points will arise. (b) The second induction point lies outside the activator but
inside the inhibitor range. An activator maximum either at the position of the
first or at the second induction point will arise. (c) The second induction point
lies outside the inhibitor range of the first one. Both activator maxima will
arise. Figure taken from Meinhardt [?].

Figure 4: Regular spacing of leaves as often observed in nature. Figure taken
from Meinhardt [?].

3.1 Regular Patterns in Phyllotaxis

The described characteristics of an activator-inhibitor system and the range of
these two substances are a possible explanation how the regular spacing of leaves
as shown in figure 4 is reached. In many plants a zigzag ordering of the leaves
can be observed. The signal for the development of a new leave corresponds to
an activator maximum. If the stipe grows an activator maximum arises and the
formation of a new leave is triggered. The formation of a second maximum is
prevented because of the inhibitor range. But if the stipe grows further the field
size becomes larger than the range of the inhibitor. Since the stipe grows just
in height the first position where a new maximum can arise is the point with
the largest distance to the old activator maximum (see figure 5).

3.2 Examples of Irregluar Patterns

Examples of observed irregular patterns are shown in figure 6. For example the
position of a stoma on a leaf can correspond to an activator maximum and also
the position of a cilius on a frog embryo. The minimal distances between the
stomata or cilia that are defined by the inhibitor range are kept. Since the leaf
or the frog embryo grows further the stomata and cilia, respectively, grow apart
such that the inhibitor range of the old maxima do not cover the whole field
anymore. Therefore new activator maxima in between the old ones can arise
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Figure 5: Development of the regular spacing of leaves. The formation of a
new leave corresponds to an activator maximum. A new leave can be developed
just outside the inhibitor range of the old one. Since the stipe grows in height
this is the point of largest distance to the old maximum during the process of
development. Figure taken from Meinhardt [?].

(a) Stomata on a leaf. (b) Cilia on Xenopus em-
bryo.

Figure 6: Examples of irregular patterns. Figures taken from Meinhardt [?].

and an irregular pattern is formed.

4 Reaction-Diffusion Model by Gray and Scott
[?]

An alternative to the activator-inhibitor systems described above is a reaction-
diffusion system proposed by Gray and Scott [?, ?]. The model is based on the
two following chemical equations:

U + 2V → 3V

V
k→ P

where U and V are two substances that influence each other. V is produced by
sum kind of autocatalysis that also consumes V . V in turn is degraded with rate
k. In addition, there exists a feed process that on the one hand consumes V and
on the other hand regulates U back to one in arbitrary units. The corresponding
differential equations are the following ones:

dU

dt
= −UV 2 + F (1− U) + DU

d2U

dx2
(6)

dV

dt
= +UV 2 − (F + k)V + DV

d2V

dx2
(7)
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Figure 7: Phase diagram of the reaction kinetics. Part I: Trivial stable steady
state at U = 1 and V = 0. Part II: In addition, two new steady states are
present. One of them is stable the other one is unstable. Part III: The nontriv-
ial stable steady states loses stability by Hopf bifurcation. Figure taken from
Pearson [?], modified.

where F determines the feed term and DU , DV the diffusion constants of U and
V , respectively.
The system possesses one trivial stable steady state at U = 1 and V = 0 that
is globally attracting. In dependency of the parameters k and F up to three
steady states can appear. The phase diagram of the reaction kinetics is given
in figure 7. In part II of the phase diagram three steady states can be observed.
There is the trivial steady state as well as an unstable and a stable steady state.
In Part III the nontrivial stable steady state lost stability by Hopf bifurcation.

4.1 Simulations

The system was simulated using a field size of 256 by 256 grid points. The
entire system was placed in the trivial steady state initially. The mid grid
points were perturbed to about U = 1/2 and V = 1/4. Then the simulations
with different combinations of the parameters k and F were run. The resulting
pattern strongly depends on the choice of these parameters. The used parameter
combinations ranges from 0.04 ≤ k ≤ 0.07 and 0 < F ≤ 0.06 but always within
Part I or III of the phase diagram. Two examples of the simulation results are
shown in figure 8.
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(a) Dots: k = 0.066 and
0.036 ≤ F ≤ 0.04

(b) Stripes: k = 0.064 and
0.04 ≤ F ≤ 0.06

Figure 8: Results of simulation of the Gray-Scott model [?, ?] using different
parameter values. Figures taken from Pearson [?].

A MatLab Code of the Gray-Scott Model

function r = gitter(time,printsteps,filename,feed,k)

sizex = 2.5;
sizey = 2.5;
gridx = 256;
gridy = 256;
pgridx = 20;
pgridy = 20;
deltat = 1;
ustart = 1;
vstart = 0;
diffusionrateu = 0.00002;
diffusionratev = 0.00001;
perturbedustart = 0.5;
perturbedvstart = 0.25;
perturbationratio = 0.01;

U = zeros(gridx,gridy);
V = zeros(gridx,gridy);
% Building grid
for i=1:gridx
for j=1:gridy

U(i,j) = ustart;
V(i,j) = vstart;

end
end
% Controlled Perturbing
for i=((gridx-pgridx+2)/2):((gridx+pgridx)/2)
for j=((gridy-pgridy+2)/2):((gridy+pgridy)/2)

U(i,j) = perturbedustart;
V(i,j) = perturbedvstart;

end
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end
% Stochastic Perturbation
for i=1:gridx
for j=1:gridy

U(i,j) = U(i,j) + U(i,j)*(rand()*2-1)*perturbationratio;
V(i,j) = V(i,j) + V(i,j)*(rand()*2-1)*perturbationratio;

end
end

if(length(filename)>0)
fig=figure;
set(fig,’DoubleBuffer’,’on’);
set(gca,’xlim’,[0 256],’ylim’,[0 256],...

’NextPlot’,’replace’,’Visible’,’off’)
end

framecount = 0;
tic;
timesteps=time/deltat;
diffusion_h=sizex/gridx;
diffusion_l=sizey/gridy;
for t=1:timesteps
Unew = zeros(gridx,gridy);
Vnew = zeros(gridx,gridy);
% Solve with forward Euler scheme
for i=1:gridx
for j=1:gridy
thisU = U(i,j);
thisV = V(i,j);
% the diffusion terms
diffU = -(2/(diffusion_h^2)+2/(diffusion_l^2))*U(i,j);
diffV = -(2/(diffusion_h^2)+2/(diffusion_l^2))*V(i,j);
if (i>1)
diffU = diffU + U(i-1,j)/(diffusion_h^2);
diffV = diffV + V(i-1,j)/(diffusion_h^2);

end
if (i<gridx)
diffU = diffU + U(i+1,j)/(diffusion_h^2);
diffV = diffV + V(i+1,j)/(diffusion_h^2);

end
if (j>1)
diffU = diffU + U(i,j-1)/(diffusion_l^2);
diffV = diffV + V(i,j-1)/(diffusion_l^2);

end
if (j<gridy)
diffU = diffU + U(i,j+1)/(diffusion_l^2);
diffV = diffV + V(i,j+1)/(diffusion_l^2);

end
diffU = diffU*diffusionrateu;
diffV = diffV*diffusionratev;
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% the differential equations
Unew(i,j)=thisU+(-thisU*thisV^2+feed-feed*thisU+diffU)*deltat;
Vnew(i,j)=thisV+(thisU*thisV^2-feed*thisV-k*thisV+diffV)*deltat;

end
end
U = Unew;
if(mod(t,printsteps)==0)
toc;
tic;
t
if(length(filename)>0)
h = contourf(U);
framecount = framecount + 1;
F(framecount) = getframe(gca,[-25 -20 470 420]);

end
end
V = Vnew;

end

if(length(filename)>0)
movie2avi(F,filename,’quality’,25,’compression’,’None’)

end

contourf(U);
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