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Abstract

Pattern formation occurs in different stages of the development of all
organisms. Processes like the determination of the tissue to which an em-
bryo cell will differentiate can easily be explained by simple mathematical
models. In order to explain spatial correlation in different pattern form-
ing systems, gradients are supposed to serve as an initial disturbance for
other activator/inhibitor systems. Gradients which are themselves build
by activator/inhibitor systems have certain features giving them struc-
tural stability. Finally these gradients can not only explain simple pat-
terns in other systems but also the stripe-like segmentation of embryos.

1 Introduction

All of the currently known mathematical models for pattern forming systems
require an initial disturbance in order to break down the homogeneous distribu-
tion of a substance across the simulated field. After such an effect the system
will drive itself further away from the initial unstable steady state and a pattern
can arise in the simulated field. For most purposes it is sufficient to assume the
initial disturbance to be of stochastic nature. But when a mathematical model is
supposed to explain spatially correlated patterns in different activator/inhibitor
systems, a different level of spatial information has to be incorporated.

A very simple kind of spatial information is a gradient of a substance x
across a cell or a small tissue (as shown in figure 1). This substance x can now
serve as an initial disturbance for different activator/inhibitor systems, e.g. by
enhancing activator production. Different systems induced by x will now be
able to form spatially correlated patterns even though they do not have any
further chemical relation.

2 Gradient formation

In order to explain how a gradient is build up different theories have been pro-
pounded. The first theory supposes that the field in which the gradient is build
up contains a source and a sink. At the source the substance x is constantly
produced, from there it diffuses across the field and is finally consumed at the
sink at the opposite end. While this theory is quite simple it also has some prob-
lems. A general source-and-sink model is heavily dependend on its parameters,
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Figure 1: A gradient across a field of cells.

so the shape of the gradient changes with the field size or the diffusion rates.
Another problem is that in order to build up a source and a sink a different
process like another gradient would have to determine their location. So, the
polarity determination is not solved by this simple model.

A more plausible theory is that the gradient substance x is the activator in a
different activator/inhibitor system. By using this theory two properties of the
gradient pattern can easily be explained. At first, a gradient has only one con-
centration maximum along the whole field. In case the inhibitor range is larger
than the field size, one activator/inhibitor maximum prevents the formation of
other maxima. At second, the only maximum has to appear on the edge of the
simulated field. This will also happen in a simple activator/inhibitor system in
case the activator range is also a bit larger than the field size. An explaination
for this phenomenon is fairly simple. In the beginning, at the place of the initial
stochastic disturbance an activator maximum will arise. From this place the ac-
tivator will diffuse into the surrounding and also into the direction of the nearest
field boundary. Since its range is larger than the field size a significant amount
of activator will arrive at the boundary and accumulate there. Furthermore, it
will help to form a new activator maximum here which will finally overcome the
initial maximum (as shown in figure 2).
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Figure 2: Formation of a gradient pattern in an activator/inhibitor system
with two initial disturbances. The left activator maximum overcomes the right
one and is drawn to the left boundary of the field. This behaviour is highly
dependent on the ranges of the two substances. The picture looks completely
different for bisected ranges. In this case two maxima arise at the same point
at which they have been induced.
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3 Gradient recovery

Gradient recovery, taken from Mein-

hardt’s presentation at FEBS meeting,

Gosau (2007). Activator (green) and

inhibitor (red) concentration from tail

(left) to head after the loss of the head.

Figure: Hydra, taken from Meinhardt’s presentation

at FEBS meeting, Gosau (2007)

An organism in which a gradient is used as po-
sitional information is the Hydra. Here an ac-
tivator/inhibitor system is used to determine
the region in which the cells are supposed to
grow a head.
Very interesting about this organism is that it
is able to regrow its head very fast once it has
been cut off. Before the Hydra can regrow its
head it has to restore the positional informa-
tion of the gradient which was disturbed by
the loss of the head. As seen on the left hand
side, the gradient easily recovers itself.
With the loss of the head also the site at which
most of the inhibitor is produced gets lost.
Since the inhibitor is degraded more rapidly
than the activator at some point in time it
will drop below a critical threshold. This will
happen at the same side at which the head
has been since the activator concentration is
highest here. Afterwards, at this place a new
activator maximum will arise and the gradient
will be restored. Finally the Hydra will regrow
a head and gain in size again.
By making use of the gradient, the Hydra is
able to specifically restore the lost tissue. This
is very important for the survival of the organ-
ism since it is not able to consume any food,
hence to produce new energy, during the time
without its head.

4 Segmentation

A gradient is not only able to determine a certain region in which something is
happening but also to determine segments along an axis. This is made use of
during the development of all higher organisms, e.g. in Drosophila m., in order
to determine the part of the body the cells later will develop to. In insects these
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Figure 3: Normal development of Drosophila m., right side taken from Men-
hardt: Models of ...

Figure 4: Double abdomen development of Drosophila m., right side taken from
Menhardt: Models of ...

regions are later visible as segments.
The genetic reason for the segmentation is the expression of different Hox

genes. The cells in the developing insect can switch between two states and
every time they change to the second state the next Hox gene is activated.
Whether a cell changes its state depends on the concentration of the gradient
substance and in case the threshold for the switching increases every time a
stripe-like pattern evolves along the gradient.

In case the gradient is disturbed the sequence of the segments will change
(as shown in figure 4) and a completely disordered organism will develop.

5 Conclusion

Gradients are very important in pattern formation. Once a gradient has build
up induced by a stochastic disturbance, the cell can reuse this positional in-
formation to ensure the position of the activator maxima of further patterns.
It is also important to notice that the organism does not have to spend much
energy on keeping the gradient up since in most cases very shallow gradients are
sufficient to serve as an initial disturbance for the induction of further maxima.

A simple model for the formation of a gradient is an activator/inhibitor
system. Using this model the recovery of a gradient of a disturbance can easily
be explained. Finally, gradients are also used in segmentation, which makes
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them an important factor in the development of all higher organisms.
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A Matlab code for figure 2

function r = solve_muster(tend)
% Function for simulating Turing’s ring of cells
% written by Sabine Pilari
% modified to simulate a cell line with an
% activator/inhibitor system by Marvin Schulz
global N
N = 20;
init = [ones(1,40) 0];
init(5) = 2;
init(15)= 1.9;
options = odeset(’MaxStep’,0.1,’InitialStep’,10^(-20));
[t,c] = ode23s(@muster,[0 tend],init,options);
y = c(:,N+1:2*N);
figure(1)
mesh(y)
xlabel(’Line of cells’)
ylabel(’Time’)
zlabel(’Activator concentration’)
figure(2)
timesteps = length(t);
firsty = y(1,:);
lasty = y(timesteps,:);
axis([1 N 0 2.5])
plot(lasty,’r’)
xlabel(’Line of cells’)
ylabel(’Activator concentration’)

function dcdt = muster(t,c)
global N
% diffusion constants 16/8=single_maximum 4/2=dual_maxima
mu = 4;
nu = 2;
% vector c, first N elements = x, then N elements = y, last = gamma
gamma = c(2*N+1);
for r=1:N

fxy(r) = c(r)*c(r)/c(r+N) - c(r);
gxy(r) = c(r)*c(r) - c(r+N);
if (r==1)
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dcdt(r) = fxy(r) + mu*(c(r+1)-c(r));
dcdt(r+N) = gxy(r) + nu*(c(r+1+N)-c(r+N));

elseif (r==N)
dcdt(r) = fxy(r) + mu*(-c(r)+c(r-1));
dcdt(r+N) = gxy(r) + nu*(-c(r+N)+c(r-1+N));

else
dcdt(r) = fxy(r) + mu*(c(r+1)-2*c(r)+c(r-1));
dcdt(r+N) = gxy(r) + nu*(c(r+1+N)-2*c(r+N)+c(r-1+N));

end
end
dcdt(2*N+1) = 2^(-7);
dcdt = dcdt’;
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