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Abstract

This introduction provides the reader with a basic knowledge about the
fascinating field of evolutionary game theory. After presenting the math-
ematical notion of games, the two probably most important approaches
to analyze a game are discussed. Each new concept is briefly discussed
theoretically and than applied to the Hawk-Dove-Game.

1 Introduction

The phenomenon of cooperative interactions among animals has puzzled biol-
ogists since Darwin. Nevertheless, theoretical concepts to study cooperation
appeared only a century later and originated in economics and political sciences
rather than biology. The mathematicians John von Neumann and Oskar Mor-
genstern developed a framework called Game Theory that was able to describe
the interaction between individuals. Important work in this field was done by
John Nash who developed the concept of the so called Nash equilibria :

An equilibrium is reached as soon as no party can increase its profit by
unilaterally deciding differently.[1]

Although there was great enthusiasm after the publication of Nash’s work, a ma-
jor obstacle remained. The outcome of a game in this time was interpreted as
the only viable outcome of a careful reasoning by ideally rational players. Thus
the justification of this rationality of the players comprised the main issue. The
solution to this problem came from a complete different field: biology. John
Maynard-Smith and George R. Price ingeniously related the economic concept
of payoff functions with evolutionary fitness as the only relevant currency in evo-
lution and laid of the corner stones for the field of evolutionary game theory[2].
In this work we try to give a first introduction to evolutionary game theory.
Although this framework today is mostly used in economics and social sciences
I concentrate on the biological interpretation. In the first section the general
concept of a game is presented. Then the famous concept of evolutionary stable
strategies that was developed by Maynard-Smith is given. The third part intro-
duces a dynamical systems approach to games and connects it with the stable
strategy concept. In the end a short outlook at the potential of evolutionary
game theory is given.
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2 Games from a Mathematical Point of View

Before we can make use of evolutionary game theory, we have to consider some
important terms that are necessary to have a common vocabulary. The first
thing we should define if talk about game theory is of course the term game.

Definition In mathematical terms a game consists of[3]

• a finite set of players P = {1, 2, . . . , I} that interact in that game

• Strategy sets S1, S2, . . . , SI which define for each possible situation in the
game the reaction of the players

• Payoff functions ui : S1 × S2 × . . . × SI 7→ R that map a set of reactions
(called strategy profile) to a certain number

In this short introduction I will concentrate on the simplest case where only two
players at a time compete against each other. This situation is often termed
pairwise competition and has the nice property that on can write the payoff
function in matrix notation.
As a second simplification we only regard pure strategies, which means that
these strategies are defined explicitly and do not depend on the other strate-
gies. The opposite case would be a mixed strategy which could be defined as
follows: with probability 0.1 play strategy A otherwise play strategy B.
With this basic knowledge about games we can look at a particular exam-
ple which is called the Hawk-Dove-Game1. In this game two animals compete
against each other for a limited resource (e.g. food). Each of the players can
choose either to play the strategy Hawk or Dove. The player with the strategy
Hawk initiates aggressive behaviour and does not stop until he gets injured or
the opponent backs down. The Dove strategy on the other hand lets the player
immediately retreat if the opponent initiates aggressive behaviour. If we now
define the value of the resource to be V and the cost of a conflict (e.g. getting
injured) to be C, we can write down the payoff matrix for the Haw-Dove-Game:

Hawk Dove
Hawk 1

2 (V − C), 1
2 (V − C) V, 0

Dove 0, V V
2 , V

2

When a Hawk and a Dove meet clearly the Hawk gets the full resource whereas
the Dove gets nothing. A little bit more interesting is the situation when two
Doves meet each other in this case they share the resource and get both V

2 (if one
wants to avoid the term “sharing” one could interpret that value even as average
payoff). In the last possible case when two Hawks meet than there expected
payoff is the probability of winning the fight times the value of the price (the
resource V ) minus the probability of loosing times the cost of getting injured.
If we now set assume that these probabilities are equal we get 1

2 (V − C).[4]

1There are several hundred different types of games. One of them, the famous Prisoners-
Dilemma was presented in my presentation. To keep things simple I will concentrate here on
the more biologically motivated Hawk-Dove-Game and use it to illustrate the basic concepts
of evolutionary game theory.
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3 Evolutionary Stable Strategies

There are two different approaches to analyze games in evolutionary game the-
ory. In this section I wont to address to the approach derived from the work
of Maynard Smith and Price which uses the concept of an evolutionary stable
strategy. The other general approach will be presented in the next section.
In general what one tries to answer with this approach is the question, which of
the possible strategies would be favoured by evolution. To do that Smith and
Price introduced the idea of an evolutionary stable strategy which is defined as
follows

Definition A strategy is called an evolutionary stable strategy (ESS) if it
has the property that a population in which almost every member follows it no
mutant can successfully invade.[5]
Now we try to derive mathematical relations from that literal definition. To do
that we try to write down function that describes the fitness of a representative
player for both strategies. For the player that follows the stable strategy σ we
get the fitness function

Wσ = W0 + (1− p)∆Wσ,σ + p∆Wσ,µ, (1)

where W0 is the baseline fitness, ∆Wσ,σ is the fitness gain the player receives
when he plays against another one with the same strategy, ∆Wσ,µ is the fitness
gain the player gets when he plays against the mutant and p is the fraction of
mutants in the population. The fitness function of the mutant can be written
as

Wµ = W0 + (1− p)∆Wµ,σ + p∆Wµ,µ. (2)

Here ∆Wµ,σ is the increase in the fitness when the mutant meets a stable strat-
egy player and ∆Wµ,µ is the payoff when to mutants meet. In order to be an
ESS we expect that the fitness of the stable strategy player is higher than that
of the mutant or in mathematical terms

Wµ < Wσ (3)

should hold. Since µ is an emerging mutant it fraction of the population should
be much smaller than that of the stable strategy (p � 1). Thus we can in a
first order ignore the last term in the equations (1) and (2) and get as the first
relation for an ESS

∆Wσ,σ > ∆Wµ,σ. (4)

The second relation for an ESS follows if in (4) equality holds and we can not
ignore the last term in (1) and (2). In this case the ESS must fulfill

∆Wσ,σ = ∆Wµ,σ and ∆Wσ,µ > ∆Wµ,µ. (5)

Altogether: a strategy σ is an ESS if it plays better against σ than a mutant
does play against σ or the mutant µ and σ play equally well against σ but σ
plays better against µ than µ does.
Fine, now let us try to apply the theoretical findings to our running example
the Hawk-Dove-Game. First we ask the question: is the strategy Dove an ESS
in the Hawk-Dove-Game? Thus we assume that our population consist mainly
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of Doves and that a mutant appears that follows the strategy Hawk. With the
use of the payoff matrix we defined in the previous section and the conditions
for an ESS we immediately receive the following:

∆Wσ,σ ≥ ∆Wµ,σ (6)
∆WDove,Dove ≥ ∆WHawk,Dove (7)

V

2
≥ V (8)

This condition can only be fulfilled if V ≤ 0 in witch case the game would’t
make any sense at all. We therefore can conclude, that the strategy Dove is not
an ESS.
Now we do the same calculations for the hawk, which yields

∆Wσ,σ ≥ ∆Wµ,σ (9)
∆WHawk,Hawk ≥ ∆WDove,Hawk (10)

V − C

2
≥ 0 (11)

This relation is true iff V ≤ C or in biological interpretation if the value of the
resource is larger than or equal to the cost of a conflict (the second condition
(5) is true because of the symmetry of the Hawk-Dove-Game).
In this section we learned that an evolutionary stable strategy is resistant against
emerging mutants. We derived the mathematical consequences of being an ESS
and we applied our new knowledge to the Hawk-Dove-Game and learned that
only the strategy Hawk is evolutionary stable.

4 The Evolutionary Dynamics Approach

In this section we will present the second concept to analyze a game in evo-
lutionary game theory. The general question of that approach is: How will a
population of individuals that repeatedly plays a certain game evolve? The
answer to that question is largely determined by the conditions under which
the individuals interact. First we concentrate on a very simple setting of an in-
finitely large population of players with two different strategies that randomly
encounter each other. In order to get not to deep into theoretical analyzes we
introduce the concept by applying it on our running example the Hawk-Dove-
Game.
First we have to determine all quantities and their relation with each other that
are necessary to describe the dynamics of the population. Since our population
is infinitely large it is sufficient to keep track of the fractions of individuals that
follow a certain strategy. With pH and pD we denote the fractions of Hawks or
Doves respectively. To model a real dynamical system we have to include some
kind of reproduction. The reproduction rate should be proportional to fitness of
an individual, which we denote with wH and wD respectively, in relation to the
mean fitness w̄. With these five quantities we can now write down the equations
that relate the number of individuals in the current generation with the number
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of individuals in the next generation:

p′
H = pH

wH

w̄
(12)

p′
D = pD

wD

w̄
(13)

This equations are called replicator equations and were offered by Taylor and
Jonker (1978) and Zeeman (1979)[5]. The only thing that is missing is an
equation that describes the fitness of an individual. To derive that we use the
assumption that the individuals meet each other randomly. If we now pick an
arbitrary Hawk we can conclude that a fraction of pH of his encounters in the
current generation were encounters with other Hawks, whereas a fraction of pD

where encounters with Doves. If we now use the well known payoffs, we get

wH = pH∆WHawk,Hawk + pD∆WHawk,Dove (14)

as expression for the fitness of a randomly chosen hawk. The same considerations
hold for the Doves and we can immediately write down the fitness term

wD = pH∆WDove,Hawk + pD∆WDove,Dove. (15)

The mean fitness w̄ can finally be calculated by

w̄ = pHwH + pDwD. (16)

To get the dynamics of the resulting system one can either perform a computer
simulation or analyze the system analytically. Since our system is quite simple
we do the latter.
On of the most common tasks in the analysis of a dynamical system is the
detection of fixed points. A fixed point constitutes a state of the system, were
it does not change any more. To find these points we look at the reproduction
equations (12) and (13). Since the sum of pH and pD is always equal to 1, we
can concentrate on one of these equations. To find the fixed point p∗

H we make
the ansatz

p∗
H = p∗

H

wH

w̄
(17)

and easily see the two possibilities: a trivial one with p∗
H = 0 and another one

when wH = w̄. The latter implies that either pD = 0 or wH = wD. Thus we
have up to 3 fixed points. Fine, but what does that mean from a biological
point of view? Biologically this implies that the population is stable if either
one species (Hawks or Doves) became extinct or the fitness of both is the same.
Since we now know the fixed points of our system we can check whether they
are stable or not. It should be obvious that pH = 1 is stable iff wH > w̄ > wD

and pH = 0 is stable iff wH < w̄ < wD. To decide in which case one of the three
situation (>,<,=) occurs we look at the equality case. Therefore we consider
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the fitness equations (14) and (15), plug-in the payoff values and equate them.

wH = wD (18)

pH
1
2
(V − C) + pD = pH0 + pD

V

2
(19)

pH
1
2
(V − C) + (1− pH)V = (1− pH)

V

2
(20)

V − V

2
+ pH(

V

2
− C

2
− V +

V

2
) = 0 (21)

V

2
= pH

C

2
(22)

pH =
V

C
(23)

Finally we derived a clear characterisation of our system, which we can di-
rectly interpret biologically: The fitness of the strategy Hawk is always larger
than or equal to the fitness of the strategy dove (this can be seen in equation
(20) remembering that V,C ≥ 0). Thus the state were all individuals in a pop-
ulation follow the strategy Hawk is a stable fixed point, whereas the state were
all individuals follow the strategy Dove is always an unstable fixed point. A
third stable fixed point (coexistence) occurs if the two strategies have the same
fitness. This happens if the frequency of the Hawks equals V

C . Since pH has to
be in the range of 0 and 1 this is only possible if C > V (the cost of a conflict
is higher than the value of the resource). Figure 1 summarizes the behaviour of
the dynamical system with help of a bifurcation diagram.
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Figure 1: Bifurcation diagram for varying conflict costs and fixed resource value
of the dynamical Hawk-Dove-Game system

The fact that the strategy Hawk is an ESS and a stable fixed point in the setting

6



of a dynamical system is no coincidence. De facto the definition of an ESS states
that the system resists slight perturbations from the state were all individuals
follow that strategy, which is the definition of stable fixed point.
In this section we presented the second possibility that one can use to exam-
ine games in the framework of evolutionary game theory. A description of a
dynamical system was developed by joining the well known replicator equation
and a fitness term. In the last paragraph we saw that there is a clear connection
between the ESS concept and the dynamical systems approach. This connection
is weakened if we change the definition of the population and for example use
a finite population size and non-random encounters between the two strategies.
This setting would be of course a little bit more realistic, but would also render
the analysis even more complected and one would have to use numerical simula-
tions instead. For the interested reader I have written a small application that
performs numerical simulations of the Hawk-Dove-Game in a 15x15 grid world.
It can be found under http://page.mi.fu-berlin.de/ueckert.

5 Evolutionary Questions

In this introduction we showed some concepts to analyze a game but did not
handle real world problems. In fact the framework of evolutionary game theory
was not developed as universitary amusement but as tool to solve problems.
Some biological questions that can be handled with this framework are: Why is
the ratio of the sexes in most of the species 1:1? How could cooperativity de-
velop during evolution? Do mitochondria hate males since they are only passed
from females to the next generation? Why are mostly females taking care of
the offspring? Why do female waterstriders perform a certain number of back
flips before they accept a male as mating partner? etc.
Although evolutionary game theory has provided numerous insights to partic-
ular evolutionary questions, a growing number of social scientists have become
interested in evolutionary game theory in hopes that it will provide tools for ad-
dressing a number of deficiencies in the traditional theory of games. Especially
in economics evolutionary game theory is getting more and more important.
Covering this topic would require some more work ...
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