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Abstract

This article gives an overview about techniques that are being used in

the modelling of population dynamics. The first part deals with discrete

population models that are suitable for species that reproduce in certain

intervals and have no overlap between the successive generations. Also

the stability of discrete and continuous models is examined. The second

part of this work exemplifies a predator prey relationship on the Lotka

Voltera System and on example data of the lynx and the snowshoe hare.

1 Introduction

Modelling the dynamics of Populations is a common tool widely used in ecology.
As other types of modelling it serves in testing hypotheses about mechanisms
involved in the regulation of the population size. There are different approaches
in modelling populations, not only because there are many different kinds of
populations, and therefore also reproduction strategies. We can describe the
growth of a bacteria population in an unbound medium for example by the
Malthusian growth model [1], which is a simple exponential growth model. Here
the population size at time point t relates in an exponential manner to the start
population with a certain growth rate r (Bt = Bt0e

rt). A major drawback of
this model is, that we assume the growth of the bacteria to be continuous which
is not true. But for large populations this effect can be neglected. A more
precise model could take the discrete steps that occur when a single cell divides
into account.

2 Discrete Population Models

2.1 Introduction

This section will deal with models that are discrete in their time steps. This
section is mainly based on the book of Murray [2]. Discrete time steps means
that the population number at time point ti+1 is a function of the population
at time point ti (Nti+1

= f(Nti
)), where ti+1 − ti is the time step. To em-

phasise that this formula always has a steady state at point 0, we can also
write Nti+1

= Nti
F (Nti

). The formulas given above are also called difference
equations, because they show the difference between two successive generations.

These difference equations or discrete models are justified for species that
reproduce in certain intervals and have no overlap between the successive gener-
ations (e.g. salmon, snowdrops or Octopus Vulgaris ). In general these difference
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equations are too hard to be solved analytically, but as for ODE models we can
extract some information about the dynamics without an analytical solution.

2.2 Example: Fibonacci Sequnce

One example of a difference equation is the Fibonacci sequence which occurs
in an astonishing number of phenomena in nature as in architecture or art.
The Fibonacci sequence was introduced by Leonardo of Pisa (1180s-1250), who
considered the growth of a hypothetical rabbit population. In this hypothetical
population the rabbits never die and reproduce in a certain interval (e.g one
month). The rabbits need one interval to mature and each pair of mature
rabbits produces one new pair each month. This means that the number of
pairs at time point t is the number of rabbits in the previous time point (cause
these rabbits do not die) plus the number of rabbits that was there two time
steps before (the number of rabbits that are mating for the first time). Written
in a formula this is Rt+1 = Rt + Rt−1. This growth is depicted in figure 2.2

Figure 1: Fibonacci growth of a rabbit population.

If we look at the ratio of two successive Fibonacci numbers, we can see that

they converge at the golden ratio (

√
(5)−1

2 ), which gives a ratio where the ratio
of a sum of two quantities to the larger part equals the ratio of the larger part
to the smaller part. Figure 2.2 shows among others the Parthenon in which the
top part relates to the bottom part in a golden ratio. If we multiply the golden
ratio with 360 degrees we will get out 222.5. Therefore 137.5 = 360− 222.5 can
be called the golden angle. This golden angle occurs in some plants when the
angles of the branches are projected to a two dimensional surface.

As mentioned beforehand, the Fibonacci sequence can be found quite often
in nature. For example the number of spirals in a lot of plants (e.g. sunflowers,
cauliflower or pine cones) are Fibonacci numbers, and the number of spirals
in clockwise and counterclockwise direction are successive Fibonacci numbers.
Figure 2.2 shows some examples where the Fibonacci sequence occurs in nature
or in architecture.

2.3 Analysis of Difference Equations

A Difference equation has the form Nti+1
= f(Nt). This formula has a steady

state where Nt = f(Nt). If we plot Nt against Nt+1, the steady states are
the intersections of the bisection of the axis and the curve f . This graphical
representation gives also an intuitive way of illustrating the propagation of the
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Figure 2: Examples for the Fibonacci sequence in nature and architecture. LU:
Nautilus shell which forms a Fibonacci spiral, where the sketched rectangles
are related by the golden ratio. MU: Parthenon in Athens where the different
structures are related by the golden ratio. It was build before the golden ratio
was discovered in mathematics. RU: Pine cone where the number of spirals are
Fibonacci numbers. LD: Tree branching with golden angle. MD: The number
of branches on each level is a Fibonacci number. RD: Same as in MD
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system which is called cobwebbing. If we start with an initial population N0

the population at the next time point will be f(Nt). Therefore we project this
value to the x-axis and start again. This procedure is shown in figure 2.3

Figure 3: Example of cobwebbing. From the starting value N0 the population
is projected by the propagation function f to the next time point N1.

As already mentioned, steady states of the system are the intersections of
the axis bisection and the propagation function f . A system is in steady state
if it does not change over time. Steady states can be stable or unstable. A
stable steady state will fall back to its original state if perturbed a little. In
contrast an unstable steady state will leave the steady state if perturbed a little.
Therefore the system will never stay in an unstable steady state in reality, since
small perturbations occur all the time.

Mathematically the stability of a steady state is determined by the value of
the derivative of the propagation function f in steady state. In our discrete case
the absolute value of the derivative has to be smaller than 1 in order have a
stable steady state. If the absolute value of the derivative is greater than one the
steady state is unstable. If we move on from the one dimensional case to higher
dimensions we can describe linear systems by a matrix equation xt+1 = Axt

where A is a square matrix which has as many rows as x. In this case the
solution of the systems reads xt = Atx0. It is clear that this equation will grow
unbounded if A has an eigenvalue with absolute value greater than 1. So in the
multidimensional case all eigenvalues of the system in steady state have to have
an absolute value smaller than 1 for the system to be stable.

Similar conditions hold for the continuous case. A linear ordinary differ-
ential equation (ODE) can be written as dx

dt
= Ax. Here the solution is

x(t) = x0 exp(tA), where exp is the matrix exponential function, which can
not be easily computed. The region of stability of the exponential function is
the negative complex half plane. Therefore all eigenvalues of A have to have a
negative real part for the system to be stable.

3 Continuous Population Models

Difference equation models are suitable for populations that have no overlap
between the successive generations. But species where the generations overlap
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(e.g humans) can to some extend be modelled by ODE models. In ODE pop-
ulation models the discrete event of the birth is simplified by continuous ODE
equations. This can be justified by considering large population numbers. In
the ODE model the rate of change of the population is determined by a function
of the population size and the time point dS

dt
= f(S, t).

3.1 Predator-Prey Models: Lotka-Volterra Systems

A simple ODE system is a Lotka-Volterra System for predator prey relations.
It reads:

dN

dt
= N(a − bP )

dP

dt
= P (cN − d)

where N are the number of preys and P are the number of predators. a is the
growth rate of the prey, b is the negative effect of the predator on the prey, c is
the benefit the prey gives to the predator and d is the decay rate of the predator.
It can be seen that the prey grows unbounded in an exponential manner in the
absence of the predator. Likewise the predator decreases exponentially without
the benefit it gets from the prey. Figure 3.1 shows a simulation result of this
system as a plot over time and a phase diagram. Notice that the direction in
the phase diagram is counterclockwise. This means that the prey increases first
which then leads to an increase of the predator.

Timecourse Phasediagram

Figure 4: Simulation of the Lotka Volterra System. Left: Plot of populations
over time. Right: Phase diagram

3.2 Example: Lynx - Snowhoe Hare

An example for a predator prey relationship is the Canadian lynx and the snow-
shoe hare. Interestingly these animals have both been hunted by a company
from 1845 - 1930, which kept records about the number of caught animals. If
we assume now that this company caught a fixed proportion of the animals
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Figure 5: Catch records for lynx and snowshoe hare of the Hudson Bay Company
from 1845 to 1930

in the habitat, we can examine the predator prey relationship between these
animals. The number of caught animals over the years is shown in figure 3.2

At first this looks quite convincing: The two species seem to oscillate and
their amplitudes are shifted. But if we plot the years 1875 until 1905 into a
phase diagram as shown in figure 3.2 we see an inconsistency. We see that first
the lynx increases and afterwards the hare increases, before the lynx decreases
again. This would mean that the hare is hunting the lynx.

There have been several attempts to explain this data, but none has been
satisfactory. One explanation would be if the hare would carry a disease killing
the lynx. This could be possible, but no such disease is known. Another proposal
was that the hunting is the disease, cause if the humans would hunt preferably
the lynx and just hunt for the hare if no lynx is available, this could lead to a
relation as shown here. But it has to be mentioned that this strange relation
where the hare seems to be hunting the lynx occurs only for the years 1875 until
1905 and the data is also not very precise. So another possibility is that the
data is just incorrect in this time interval.
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Figure 6: Phase diagram of the hare-lynx relation in the years 1875 to 1905
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