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Motivation

Defining the target function

m target function: f: RP — R

m argminyf(x)

m e.g. data fitting, maximizing likelihoods and other
optimization problems
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Motivation

Some examples from real world

Non biological examples:
m chip design
B engeneering

B economics
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Motivation

Some examples from real world

In bioinformatics:
m Maximizing a likelihood function in ...

m ... phylogeny
m ... haplotyping
® ... proteomics

m Minimizing the inner energy of molecules

m Linear and non linear regression (e.g. data fitting, micro array
analysis)
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Motivation

Features of the target function

For each of the above mentioned problems target function can be
defined with different features:
m target function
m dimensionality
m is differentiable or non differentiable
m constraints exist
m function value

m is continous or discrete
m has more than one optimum
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Optimization of differentiable

target functions
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Differentiable

How to find an optimum

m target function must be two times differentiable in every point

m 1. calculate Jacobian matrix (first partial differentiation)
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Differentiable

Jacobian matrix

of
Ox1
o= :
of
Oxp

where x is a vector with D elements
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Differentiable

How to find an optimum

m target function must be two times differentiable in every point
m 1. calculate Jacobian matrix (first partial differentiation)

m 2. calculate Hessian matrix (second partial differentiation)
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Differentiable

Hessian matrix
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where x is a vector with D elements
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Differentiable

How to find an optimum

m target function must be two times differentiable in every point
m 1. calculate Jacobian matrix (first partial differentiation)
m 2. calculate Hessian matrix (second partial differentiation)

m 3. if the target function is quadratic, the extrem values can be
calculated directly
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Differentiable

Since 3. is not alway true, one has to proceed interatively

m method of steepest descent is one of the simplest gradient
based techniques

m "7 is replaced by the identity matrix

m the iteration looks as follows:
Xn4+1 = Xn — 77 - §(Xn) where ~ defines a step size
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Differentiable

Steepest descent

Figure: Path of the steepest descent method
(http://www.basegroup.ru/images/neural/conjugate/pict2.gif)
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Differentiable

SEE

Figure: Minimizing the energy of two H,O molecules (http://page.mi.
fu-berlin.de/~burkhard/Lectures/Sim_Biomol_04/ue4.html)
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Differentiable

There are more sophisticated methods of gradient based
techniques

Gauss-Newton

Fletcher-Reeves

Broyden-Fletcher-Goldfarb-Shanno

]
]
m Davidon-Fletcher-Powell
]
m Levenberg-Marquardt
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Differentiable

Problem

m target function is not uni-modal
= likely that above mentioned methods will get caught in
local optimum

m function value need not to be continously
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Optimization of non
differentiable target functions
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Non differentiable

Simpelx based methods

m Definition: an D dimensional simplex has D+1 affinely
independent points in Euclidean space of dimension D or
higher

m Example: Nelder-Mead method
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Non differentiable

Example of Nelder-Mead algorithm

>

reflection succeeds
| = .
expansion fails

———  successful move
—— unsuccessful move

A current simplex

P previous simplex
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Figure: Evolution of the Nelder-Mead method (Differential Evolution,
Storm Price)
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Non differentiable

Example of Nelder-Mead algorithm

Figure: Evolution of the Nelder-Mead method (Differential Evolution,
Storm Price)
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Non differentiable

Example of Nelder-Mead algorithm

\ reflection fails

contraction succeeds

= 2]

Figure: Evolution of the Nelder-Mead method (Differential Evolution,
Storm Price)
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Non differentiable

Example of Nelder-Mead algorithm

Figure: Evolution of the Nelder-Mead method (Differential Evolution,
Storm Price)
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Non differentiable

Applet for Nelder-Mead method

http:
//de.wikipedia.org/wiki/Downhill-Simplex-Verfahren
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Simulated annealing

Simulated annealing
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Simulated annealing

The term "annealing" comes from metallurgy

Figure: Japanese swordsmith
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Simulated annealing

An only hardened sword is useless

Figure: A sword will burst soon if it is only hardened
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e  Simulated annealing

This burst is caused by the atomic structure of the sword

Substitutional larger atom
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Substitutional smaller atom

Figure: Defects of the atomic structure
(http://en.wikipedia.org/wiki/Image:Defecttypes.png)
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Simulated annealing
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Simulated annealing

Annealing can be applied to optimization problems

m postions of atoms = parameters of a considered problem
m inner energy of atomic ensemble = target function

m temperature = parameter of probability function for accepting
parameterizations resulting in worse function values
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Simulated annealing

Formulation of simulated annealing

m for atoms: P(AE) ~ exp (75F)
where T represents the temperature, AE the energy difference
of two states and k the Boltzman constant (k ~ 1.381 - 1023%)
m for problem function: © = exp (—ﬁ%)

where T represents the "temperature”, d the difference of two
function values and 3 is a problem dependant control variable

Jost Neigenfind

Global optimization and Evolutionary algorithms



Simulated annealing

ETIES

m http://www-il.informatik.rwth-aachen.de/
“algorithmus/algo4l.php

m http://wwwai.wu-wien.ac.at/ hahsler/CPPAP/
projekte/SS2001/Kammlander/
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Simulated annealing

Application of simulated annealing to the TSP
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Figure: The Travelling Salesman Problem is NP hard (http://wuw.f4.
fhtw-berlin.de/ weberwu/diplom/tsp/HTMLS/SA_BSP.HTM)
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Simulated annealing

Application of simulated annealing to the TSP
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Figure: A solution of the given TSP (http://www.f4.fhtw-berlin.
de/~weberwu/diplom/tsp/HTMLS/SA_BSP.HTM)
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Simulated annealing

SEE

http://www.heatonresearch.com/articles/64/pagel.html
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Evolutionary algorithms (EAs)
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Evolutionary algorithms
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Evolutionary algorithms

Evolutionary algorithms

m Evolution strategies (ESs)
m Genetic algorithms (GAs)
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Evolutionary algorithms

Evolution strategies and genetic algorithms

- Initializatiomn(); //choose starting population of B members
vwhile (not converged) //decide the number of iterations
{
for (i=0; i<h; i++) //child vector generation: A>p
{
Py (i) = rand(p); //fpick a random parent from |l parents

P, (i) = rand{p); //pick another random parent p,(i) != p,; (i}
e, (i} = recombine(p;(i).p,(i)): //recombine parents

¢, (i) = mutate({c,{1)); //matate child

gave{e (i)); //save child in an intermediate population
}
selection(); //p new parents out of either A, or Adj

Figure: Meta-algortihm for ESs and GAs (Differential Evolution, Storm
Price)
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Evolutionary algorithms

Differences between ESs and GAs

| H ES | GA |
developed by Rechenberg & Schwefel | Holland & Goldberg
kind of problem || continous target function |combinatorial problems
parameters continous discrete
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Evolutionary algorithms

- A vector population is
generated such that the
allowed parameter region
is entirely covered.

:
I
‘
j\‘\- contour Iines
! of f{x),%;)
All vettors get a
uniqué index for bookkeeping
because each of them has to
L g b A P e i e enter a competition.

‘ - > X
X .min X Smax

Figure: Evolution of the DE method (Differential Evolution, Storm Price)
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Evolutionary algorithms

difference
VECTOr Xp—Xp Xy and X, are two
randomly selected vectors

from the vector population

Figure: Evolution of the DE method (Differential Evolution, Storm Price)
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Evolutionary algorithms

Differential evolution

X,3 is another randomly
selected vector which,
together with the weighted
difference vector, yields
the trial vector u,.

> X

Figure: Evolution of the DE method (Differential Evolution, Storm Price)

on and Evolutionary algorithms



Evolutionary algorithms

u, competes against
the vector no. 0 of the
population.

The vector with the
lower objective function
value gets marked as
vector no. 0 of the next
population.

> X

Figure: Evolution of the DE method (Differential Evolution, Storm Price)
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Evolutionary algorithms

Summary

target f. optimum
method continous [ discret [ local | global | # of f. values| t
steepest d. yes no | yes | no single fast
simplex yes yes | yes | no | single/multi | fast
simulated ann. yes yes | yes | yes* single slow
EAs yes yes |yes® | yes* multi slow

* but not guaranteed
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Evolutionary algorithms

Some tips for the optimization of a target function

m try as much algorithms as possible

m try different sets of parameters of the algorithm instead of
default values

m annealing schedule
m population size (> 10x number of parameters)

m start algorithm at different coordinates of solution space
(> 10x)
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Gene expression programming

ion and Evolutionary algorithms



What is GEP

m fitting whole mathematical functions or programs to problem
instances (similar to polynomial interpolation)

m functions are variated not parameters

m populations of functions are represented as kind of genes and
chromosomes

m similar to the EAs, populations of functions compete against
each other given a fitness function

Jost Neigenfind

Global opt tion and Evolutionary algorithms



Structure of a "gene”

The function /(a + b) - (c — d) can be represented by the
following tree:
@
O,
OO
@ ®WO© @

01234567

The sequence of the "gene” then is: Q. +—abcd
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But "gene’s are given a tail

” 1,_
The "gene™
012345678901234567890

+Q-/b*aaQbaabaabbaaab

defines the following tree and function respectively:
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If now a mutation is introduced at position 9

The new "gene”™

012345678901234567890
+Q-/b*aaQ+aabaabbaaab

defines the following new tree and function respectively:

= tails are needed for mutations
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[3 C. Ferreira.
Gene expression programming: A new adaptive algorithm for
solving problems.
Complex Systems, 13, 2:87-129, 2001.

[§ k. V. Price, j. Lampinen, R. Storn.
Differential Evolution.
Springer.

[ Jr. M.P. Vecchi S. Kirkpatrick, C.D. Gelatt.
Optimization by simulated annealing.
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“Say...What's a mountain goat doing way up here in
a cloud bank”

Figure: http://www.geocities.com/francorbusetti/anneal.htm
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