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Big Steps in Evolution

1. Molecular replication

2. Translation and genetic code

3. Procariotic cells

4. Eucariotic cells

5. Multicellular live
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Question

I How do macromolecules evolve?

I How can information content of genes be
maintained/increased?
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Quasispecies und Hypercycles

I Model from M. Eigen and P. Schuster [1]

I Explains evolution from simple self-replicating units to
complex forms of self-organization

I Based on a mathematical model
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Necessary Properties for Darwinian Behaviour

1. Metabolism

2. Self-reproduction

3. Mutability
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Metabolism

I Formation and degradation of molecular species
⇒ independent and spontanious

I System away from equilibration

I Selection effective only for intermediate states
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Self-reproduction

I Necessary for any selection process involving destabilization

I Constant degeneration
⇒ Conservation of information
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Mutability

I Physical associated with self-reproduction

I Main source of new information

I Has to be limited - danger of information loss
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Modelling of Self-reproduction

A + X
k→ 2X , X

k ′→ F

I X = molecular species

I A = raw material

I F = final product

I k = rate of self-replication

I k’= rate of degeneration
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Modelling with a Differential Equation

dn

dt
= kn − k ′n = (k − k ′)n

solution:
n(t) = n0e

(k−k ′)t

I n = start concentration

I t = time
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Development of Concentrations
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Modelling of Molecular Evolution

Usually there exist several different species Xi

A + X1
k1→ 2X1, X1

k ′1→ F

A + X2
k2→ 2X2, X2

k ′2→ F

...

A + Xn
kn→ 2Xn, Xn

k ′n→ F
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Generalized Differential Equation

dni

dt
= kini − k ′i ni = (ki − k ′i )ni

solution:
ni (t) = ni ,0e

(ki−k ′i )t
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Including the Selection Process

I A selection process needs selection pressure

1. limited raw material
2. limited total number of macromolecules
⇒ permanent dilution
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Differential Equation

dni

dt
= (ki − k

′
i )ni − ϕni

Determining ϕ

0 =
∑

i

dni

dt
=

∑
i

(ki − k
′
i )ni − ϕ

∑
i

ni

⇒ ϕ =

∑
i (ki − k

′
i )ni∑

i ni
=

∑
i Eini∑
i ni

= Ē

I ϕ = rate of dilution

I Ei = ki − k
′
i (selection value)
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Selection Equation

dni

dt
= (Ei − Ē )ni

I Ē = mean excess productivity (selection threshold)

Observation
Species with

I Ei > Ē ⇒ dni
dt > 0 : concentration increases

I Ei < Ē ⇒ dni
dt < 0 : concentration decreases
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Development of Concentration

⇒ Only one species survives

—E1 = 3.5

- -E2 = 2.75

· · ·E3 = 0.5

Ē = 2.25

Ebeling et. al.

Carsten Kemena & Inken Wohlers Sequence Evolution



Introduction
Molecular Evolution
Information Content

Hypercycles
Summary

Principles of Molecular Evolution
Modelling of Molecular Evolution
Selection under Constant Total Concentration
Selection Equatios Including Mutations
Quasi species

Development of the Selection Threshold

Ebeling et. al.
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Mutation

dni

dt
= Fini − k

′
i ni +

∑
j

mijnj − ϕni

Qi = fraction of error-free replication
Fi = kiQi (error free replication rate)
mij = mutation rate from species j to species i
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Selection Value Wi

I Wi = kiQi − k
′
i

I Wi > Ē ⇒ concentration increases
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Quasi Species Distribution

I Mutations ⇒ not a selection of a single species

I Case Wm �Wj , j 6= m
⇒ high concentration of master species Xm

⇒ positive concentration of closely related species
⇒ selection of one quasi species
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The Quasi Species

I Average sequence is called wild-type

I Only a small fraction equals the wild-type
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Distribution of the Quasi Sequence

(Schuster)
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Stable Conservation of Information

The quasi species is a steady distribution around the master
sequence. If Mutation rate gets too high

I Too many mutations are produced and the master sequence
can not survive

I The quasi species distribution gets unsteady

I Process of inheritence of information collapses

[3]
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Three Questions

1. What is the lower bound for the probability of an error-free
replication?

2. Given an error rate how much information (number of
nucleotides) can be conserved?

3. How can the information content (number of nucleotides) be
increased?

[4]
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Minimal Probability for Error-free Replication

Qm = qNm
m

Qm: Probability for error-free replication of the master sequence,
Quality factor
qm: Probability for error-free replication of one monomer in master
sequence
Nm: Length of master sequence

I Correct master sequence copies must be able to compete with
their error copies:

1 > Qm > Qmin.
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Minimal Probability for Error-free Replication

I Depends on superiority of the master sequence

I Minimal probability of error free replication of one monomer
depends on sequence length

Qm > Qmin = qNm
min =

1

σm

⇔

qmin = Nm

√
1

σm

σm: Superiority of master sequence
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Superiority of the Master Sequence

I Weighted Quotient of the master sequence’s fitness divided by
the rest of the population’s fitness

σm =
Am

Dm + E k 6=m

σm: Superiority of the master sequence
Am: Reproduction rate of master sequence
Dm: Degradation rate of master sequence
E k 6=m: average productivity of all competitors
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Maximum Sequence Length

I Limit inversely proportional to the average error rate per
symbol 1− qm

Nmax =
lnσm

1− qm

Expectation Value of an Error

I Expectation value of an error in the master sequence must
always remain below a sharply defined threshold

E(εm) = Nm(1− qm)⇔ exp(E(εm)) < σm
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Error rate per
monomer
1 − qm

5x10−2

5x10−4

1x10−6

1x10−9

Superiority
σm

2
20
200

2
20
200

2
20
200

2
20
200

Sequence
length Nmax

14
60
106

1386
5991
10597

0.7x106

3.0x106

5.3x106

0.7x109

3.0x109

5.3x109

Molecular mechanism

enzyme-free RNA
replication

single-stranded RNA
replication via specific
replicases

DNA replication via
polymerases including
proofreading by exonuclease

DNA replication and
recombination in eucaryotic
cells

Biological
Example

t-RNA
precursor,
N = 80

phage Qβ ,
N = 4500

E.coli,
N = 4x106

vertebrates
(man),
N = 3x109
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Cooperation in Sequence Evolution

Lower error rates and thus larger sequence lengths can be achieved
if enzymes catalyse replication.

Enzymes

I Lower the error-rate

I Accelerate replication

Cooperation = Selective Advantage
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Catalyst
Catalytic Cycle
Catalytic Hypercycles
Competition of Hypercycles

Catalyst

I Sequence of reactions where any product is identical with a
rectant of a preceeding step

I Example: Catalytic mechanism of an enzyme
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Catalytic Cycle

I One up to all intermediates are catalysts

I Example: Replication of single stranded RNA (linear growth)
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Autocatalyst

I Self-replicative Unit

I Example: DNA-Replication (exponential growth)
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Catalytic Hypercycles

I Cycle of self-replicating or autocatalytic units

I RNA/DNA molecules catalyse synthesis of enzymes which in
return catalyse Synthesis of RNA/DNA molecules
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RNA-Phage Infection of a Bacterial Cell

I Translation of infectious strand instructs synthesis of a protein
subunit (E) which, associated to host proteins, forms a
phage-specific RNA-replicase

I This replicase complex exclusively recognizes phenotypic
features of the phage-RNA

I Results in burst of phage-specific RNA-replicase
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Simple Hypercycle

dnE

dt
= ATnI − DEnE

dnI

dt
= ARnInE − DInI
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Timecourse

Figure: AR = AT = DI = DE = 1

Decay for nI (0) > 1

Growth for nI (0) < 1
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Competition of Hypercycles

[5]

Why has only one basic molecular maschinery of the cell
evolved, common for all species?

I Hypercycles compete with each other if they need the same
chemical building blocks and if they do not cooperate in
higher order linkage
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Competition of Hypercycles

dnE ,i

dt
= AT ,inI ,i − ϕE (t)nE ,i

dnI ,i

dt
= AR,inI ,inE ,i − ϕI (t)nI ,i

From ∑
i

dnE ,i

dt
= 0 ,

∑
i

dnI ,i

dt
= 0

follows

ϕE =

∑
i AT ,inI ,i∑

k nE ,k
, ϕI =

∑
i AR,inI ,inE ,i∑

k nI ,k
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Steady States for Competition of Two Hypercycles

There are two possible stable steady states:

(nE ,1, nI ,1, nE ,2, nI ,2) = (0, 0,CE ,CI )

(nE ,1, nI ,1, nE ,2, nI ,2) = (CE ,CI , 0, 0)

Depending on the initial value the number of molecules tends to
one of the steady states.
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Figure: AT ,1 = AR,1 = 1,AT ,2 = AR,2 = 0.5
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Once-forever-selection

I If two hypercycles compete with each other only one of them
can survive.

I The lower the number of molecules belonging to a competing
hypercycle the smaller the chance it survives.

I With (coincidentally) good initial values also non-optimal
systems could have prevailed

Only one hypercycle survived and developed to become the
molecular machinery of the cell.
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Summary

Quasi species

I Explain the inner diversity of species

Hypercycles

I Explain how to increase the information content of
self-replicating units

I Are a possible explanation why there is no diversity of the
molecular maschinery of the cell.

Open Questions

I How were more and more specific enzymes added during
evolution?

I How did a genetic code emerge?
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Thanks for your attention!
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