Structure of biological networks

Presentation by Atanas Kamburov

Seminar Gute Ideen in der theoretischen Biologie / Systembiologie

08.05.2007

Overview

- Motivation
- Definitions
- Large-scale properties of cellular networks
 - the scale-free property
 - the small-world effect
 - disassortativity
 - modularity
- Bottom-up characterization of cellular networks: network motifs
- Summary
- Literature

Motivation

- Biological functions can rarely be related to *individual molecules*
- Instead, they arise from the complex molecular interactions that take place in the cell
- The numerous interactions form interaction networks where nodes represent molecules and edges represent functional interactions
- understanding the structure and dynamics of such networks is a central challenge for biology
 - → network biology, systems biology

Network shapes

Network characterization

- Networks can be characterized using global and/or local measures
- global properties
 - node connectivity distribution
 - path lengths
- local properties
 - node clustering ratio
 - frequent patterns (motifs)

Some definitions

- Networks can be directed or undirected depending on the nature of the interactions
 - directed: material flow, information flow
 - undirected: physical interactions
- Degree (connectivity) k₁ of a node is the number of links that the node has to other nodes
 - directed networks have two types of degree: indegree and outdegree
- Average degree <k> = sum(k_i) / #nodes
- Degree distribution P(k) is the probability that a randomly picked node has k links

- For decades, cellular networks were considered to be either completely regular or completely random
- Both models are unable to explain the existence of nodes with high connectivity
- Recent studies show that in many biological networks, P(k) follows a power law distribution P(k) ~ k^{-γ} with 2<γ<3
- Scale-free network
 - many nodes with few links
 - few nodes with many links (hubs)

- Metabolic networks have scale-free nature
- Most protein interaction networks and gene regulatory networks also have scale-free nature
- Not every cellular
 network is scale-free
 - e.g. transcription regulatory networks of S.cer. and E.coli

- Effects of the scale-free nature of cellular networks
 - Robustness: random removal of nodes often does not affect the network integrity and function
 - Attack vulnerability of hubs: if any hubs are removed, the networks is disintegrated
 - → In yeast, only 10% of the proteins with less than 5 links are essential; from proteins with more than 15 links, over 60% are essential

- Evolutionary origin of the scale-free nature of cellular networks:
 two fundamental processes
 - growth process: new nodes join the system over an extended time period
 - preferential attachment: new nodes prefer
 to connect to nodes with many connections
- The scale-free property of protein interaction networks is probably rooted in gene duplication
 - products of duplicated genes have same interaction partners
 - the duplication of a hub's interaction partner is more probable

Disassortativity of biological networks

- An interesting observation: hubs avoid connecting to each other (disassortativity)
- To this point, dissasortativity cannot be explained by network biologists

The small-world property

- In regular networks, the average path length L between couples of nodes is relatively long
- L is shorter for random networks: the **small-world** property
- Even a few rewiring procedures of a regular network suffice to achieve a small-world effect

The small-world property

- Biological networks have even smaller average path lengths than random networks: ultra-small-world effect
 - first documented for metabolism
 - → often, 3-4 reactions suffice to convert one metabolite to another
 - Iocal concentration perturbations quickly reach the whole system
 - ultra-small-world effect underlies selection: mean path length of metabolic networks is the same in bacteria and complex multicellular species

Modularity of cellular networks

- Cellular functions often carried out in a highly modular manner
 - protein complexes
 - temporally coregulated molecules that control cell cycle
- A sign for this is the significantly high average clustering coefficient <C> of most cellular networks
 - The clustering coefficient C₁ = 2n₁ / k₁(k₁-1) shows the fraction

of neighbours of node I that are directly linked to each other (n_1 is the number of links between neighbours of I)

 \rightarrow <C>=sum(C₁) / number of nodes

Modularity of cellular networks

- Functional modules are interconnected in the cell to form a "Network of networks"
- The scale-free property and modularity coexist in the hierarchical network model (Ravasz et al.,2002), where clusters are combined in an iterative manner to generate a hierarchical network

Architectural features of cellular networks

- Topological properties of most biological networks
 - scale-free
 - → robustness
 - > attack vulnerability of hubs
 - disassortativity
 - ultra-small-world property
 - modularity

Network motifs

- Scale-free and hierarchical features determine the large-scale feature of networks
- An alternative approach for network analysis: finding subgraphs that are significantly overrepresented (motifs)

Network	Nodes	Edges	N _{rea1}	N _{rand} ± SD	Z score	Nreal	N _{rand} ± SD	Z score	Nreal	N _{rand} ± SE) Z score
Gene regulati (transcription	ion n)			X ¥ Y ¥ Z	Feed- forward loop	$X \longrightarrow_Z Z$	₩ W	Bi-fan			
E. coli S. cerevisiae*	424 685	519 1,052	40 70	7 ± 3 11 ± 4	10 14	203 1812	47 ± 12 300 ± 40	13 41			
Neurons				X ¥ Y Z	Feed- forward loop	x z	₹ ₩	Bi-fan	⊻ × Y ¥	ν ν ν	Bì- parallel
C. elegans†	252	509	125	90 ± 10	3.7	127	55 ± 13	5.3	227	35 ± 10	20
Electronic cir (forward logic	cuits : chips)			X ¥ Y ¥ Z	Feed- forward loop	x	√Y ₩	Bi-fan		Z Z V V	Bì- parallel
s15850 s38584 s38417 s9234 s13207	10,383 20,717 23,843 5,844 8,651	14,240 34,204 33,661 8,197 11,831	424 413 612 211 403	2 ± 2 10 ± 3 3 ± 2 2 ± 1 2 ± 1	285 120 400 140 225	1040 1739 2404 754 4445	1 ± 1 6 ± 2 1 ± 1 1 ± 1 1 ± 1	1200 800 2550 1050 4950	480 711 531 209 264	2 ± 1 9 ± 2 2 ± 2 1 ± 1 2 ± 1	335 320 340 200 200
Electronic circuits (digital fractional multipliers)			∕ Y ←	z	Three- node feedback loop	x z	√Y ₩	Bi-fan	x− ↑ z ≤	\rightarrow Y \downarrow W	Four- node feedback loop
s208 s420 s838‡	122 252 512	189 399 819	10 20 40	1 ± 1 1 ± 1 1 ± 1	9 18 38	4 10 22	1 ± 1 1 ± 1 1 ± 1	3.8 10 20	5 11 23	1 ± 1 1 ± 1 1 ± 1	5 11 25
World Wide V	Web			X ∳ ¥ ∳ Z	Feedback with two mutual dyads	X $Y \leftarrow$	⇒ z	Fully connected triad	$\gamma_{x \leftarrow x}$	∧ > z	Uplinked mutual dyad
nd.edu§	325,729	1.46e6	1.1e5	$2e3 \pm 1e2$	800	6.8e6	$5e4 \pm 4e2$	15,000	1.2e6	$1e4 \pm 2e^{i}$	2 5000

Network motifs

Motifs are rarely independent: **motif clusters**

Summary

- Most (but not all!) cellular networks are scale-free, ultra-smallworld networks organized most probably in a hierarchical manner
- To characterize the large-scale properties of the network, measures like node connectivity, path length, clustering coefficient are used
- Motifs are subgraphs that are significantly overrepresented in real networks. Each class of complex networks has own characteristic motifs

Discussion

- Network biology still at its infancy
- Topology does not determine the function of cellular networks
 - System dynamics

Thanks!

Sources

- Barabasi A, Oltvai Z. Network biology: Understanding the cell's functional organization (2004) Nature Genetics 5 (101-113)
- Watts D, Strogatz S. Collective dynamics of "small-world" networks (1998) Nature 393 (440-442)
- Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U.
 Network motifs: Simple building blocks of complex networks (2002) Science 298 (824-27)
- Ravasz E, Somera A, Mongru D, Oltvai Z, Barabasi A. Hierarchical organization of modularity in metabolic networks (2002) Science 297 (1551-1555)
- The above publications are sources for the pictures used in this presentation.