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Discrete Population Models

Differential equation models require overlap of generations

Often no overlap between the generations (e.g. salomon, snowdrops,
Octopus Vulgaris )

Difference equation:
I Nt+1 = −

∫
(Nt) = NtF (Nt)

Discrete time steps

Can in general be solved analytically
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Small Example

e.g. Nt+1 = rNt , r > 0 ⇒ Nt = r tN0

Two populations

Life span: 1 year

Bees
I 100 Bees produce 90 new ones each year ⇒ r = 0.9

Wasps
I 100 Wasps produce 101 new ones each year ⇒ r = 1.01
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Fibonacci Sequence

Rabbit population
I Rabbits take one month to mature
I Each productive pairs bears a new

pair
I Rabbits never die

Rn+1 = Rn + Rn−1

Golden ratio: Nt
Nt+1
≈
√

5−1
2 ≈ 0.618

Golden angle:√
5−1
2 ∗ 360 = 222.5⇒ φ = 137.5

Figure: Rabbit
pedigree taken from

http://www.math.temple.edu/ reich/Fib/fibo.html
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Fibonacci Sequence: Sunflower head
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Fibonacci Sequence: Sunflower head
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Further examples
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Analysing difference equations
Remember: Nt+1 = −

∫
(Nt)

Steady state if Nt+1 = Nt

Example: −
∫

(Nt) = Ntexp[r
(
1− Nt

K

)
] (Ricker function)

I K → max. capacity
I r → intrinsic growth rate
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Graphical Solution: Cobwebbing
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Steady State

Steady state:
Intersections of the the
curve Nt+1 = −

∫
(Nt) and

the line Nt+1 = Nt

Stable steady state: small
pertubation ⇒ system will
fall back to steady state

Derivative of −
∫

(Nt) in the
steady state determines
stability
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Examine steady state in the example

Linearize around steady state
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Linearization Around Steady State

Derivation: df
dNt
|Nt=N∗

Linearization (1. taylor
expasion)
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Stability: Graphical Solution

This is a (linear) stable steady state
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Stability: Graphical Solution

slope > 1 slope < -1
-1 < slope
< 1

Observation:
Steady states with
abs. derivative < 1
are stable
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Stability and Summary

Stability: Small perturbations vanish

Discrete case xt+1 = Axt :
I Solution: xt = Atx0

I p(λ)(max. abs. eigenvalue)≤ 1⇒ Stability

Continuous case dx
dt = Ax :

I Solution: x(t) = x0 · exp(tA)
I v(λ)(max. real part of eigenvalues)≤ 0⇒ Stability

Populations that reproduce in certain intervals → difference equations

Steady state: intersection of Nt+1 = −
∫

(Nt) and Nt+1 = Nt

Fibonacci sequence in plants
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Continuous Population Models

Most populations have overlap between generations (e.g Humans)

Can to some extend be modeled by ODEs
dS
dt = −

∫
(S , t)

Good for large populations
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Predator-Prey: Lotka-Volterra Systems

Simple predator prey model
dN
dt = N(a− bP)
dP
dt = P(cN − d)

I a growth rate prey
I b neg. effect of predator on pey
I c benefit of prey for pedator
I d decay rate of predator

prey in absence of predator grows unbounded

predator reduces preys growth rate

without prey the predator decays exponentially
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Predator-Prey: Lotka-Volterra Systems

Timecourse Phasediagram
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Example: Lynx - Snowshoe Hare

Lynx hunt snow hares

Long term data available (1845 - 1930)

Data from fur catch records
I Assumption: Fixed proportion of the population was caught
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Timecourse Lynx Hare
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Phase Diagram 1910 - 1935

Max Flöttmann and Jannis Uhlendorf () Population Dynamics June 12, 2007 23 / 54



Time Course 1875 - 1904
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Phase Diagram 1875 - 1904
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Does the hare eat the lynx?

Proposal: The hare carries a disease
I No such disease known

Hunting is the disease

Data does not represent a fixed proportion
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Summary

Non overlaping generations → discrete models
I Stability: max. abs. eigenvalue ≤ 1

Difference equations occur in nature

Overlap and continuous behaviour → ODE models
I Stability: max. real part of eigenvalue ≤ 0

Modeling populations can involve traps
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Peruvian Anchovies

Figure: Fishing is a large economic sector in Peru
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Peruvian Anchovies

Figure: Sudden breakdown after many years of fishing.
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Why?

Question: Why did this breakdown happen so sudden?
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Why?

Approach: Mathematical modeling!
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How to Model the Problem

What has to be taken into accont?

Biology

population size

growthrate of anchovies

amount of harvested fish

Economy

number of trawlers

price for fish

costs for fishing
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Biology

How can the growthrate of anchovies be modelled?

We could use a simple logistic equation like this:

x ′ = rx(1− x

K
) (1)
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Biology

But:

I Anchovies live in huge swarms
I The bigger the swarm the better the chances for survival and to find a

partner

So this function fits better:

x ′ = rx2(1− x

K
) (2)
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Biology

We add a small constant for fishes that can’t be caught:

x ′ = a + rx2(1− x

K
) (3)

Finally we subtract the amount of fish that is harvested:

x ′ = a + rx2(1− x

K
)− vEx (4)

But how is E defined?
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Economy

We build a strongly simplified model of Economy:

I an abstract value for fishing effort E
I fish has a price p
I fishing has certain costs c
I v is the fishing yield per inset unit E

This yields the equation:

E ′ = αE (pvx − c) (5)
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Max Flöttmann and Jannis Uhlendorf () Population Dynamics June 12, 2007 37 / 54



The final Model

x ′ = a + rx2(1− x

K
)− vEx (6)

E ′ = αE (pvx − c) (7)

a: small constant for remaining fishes

r : linear growth factor

K: unharvested equilibrium density

v: gain per investement

p: price for fishes

c: cost per inset

α: small factor to represent that E is a slow changing variable
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Time Series
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What is this Model good for?

1 We can analyse the behaviour of the model.

2 We can change parameters and get different results.

3 We can predict future developments and try to react before
catastrophe happens.
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Steady States
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Figure: Stable steadty state at high population
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Steady States
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Figure: bifurcation point
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Steady States
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Figure: three steady states
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Steady States
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Figure: stable steady state at low level
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Phaseplane

Figure: The Phaseplane with coloring by gradient
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Hysteresis

Figure: hysteresis - a memory of the system
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Low Harvest
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High Harvest
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After Catastrophe
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Regeneration

Max Flöttmann and Jannis Uhlendorf () Population Dynamics June 12, 2007 50 / 54



There are even worse cases!

Figure: new fishes have to be added to the environment
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Maximum Sustainable Yield

maximum value for fishing before the breakdown occurs

can be predicted, but should be used carefully
I many different prediction methods with different outcomes
I parameters are hard to determine
I at MSY minimal disturbances can lead to breakdown of population
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Separatrix
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El Niño
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Outlook
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