

Allometric Scaling Laws In Nature pt. 1

Alexander Bujotzek

Gute Ideen in der theoretischen Systembiologie, 10th of July 2007

"In jeder reinen Naturlehre ist nur soviel an eigentlicher Wissenschaft enthalten, als Mathematik in ihr angewandt werden kann."

Immanuel Kant (1724 - 1804)

"In jeder reinen Naturlehre ist nur soviel an eigentlicher Wissenschaft enthalten, als Mathematik in ihr angewandt werden kann." Immanuel Kant (1724 – 1804)

Physics and chemistry (e.g. Newton's laws) have been elevated to true science...

qualitative \rightarrow quantitative, predictive

But what about biology?

We know about general principles:

- Mendelian laws of inheritance
- Natural selection (Darwin's theory of evolution)

We know about general principles:

- Mendelian laws of inheritance
- Natural selection (Darwin's theory of evolution)

Does life have more, universal and quantifiable laws? qualitative → quantitative, predictive

Scaling of biological systems might give us a hint...

Allometric Scaling Scaling?

toy ship [3]

Scaling laws deal with: real ship [4]

- measuring and comparing the relation of scale to the parameters of a system
- revealing scale invariant quantities

Allometric Scaling Scaling?

In physics, scaling laws typically...

- reflect underlying generic features and physical principles
- are independent of detailed dynamics and specific characteristics

Allometric Scaling Scaling?

In physics, scaling laws typically...

- reflect underlying generic features and physical principles
- are independent of detailed dynamics and specific characteristics

Therefore, scaling also has relevance for biology. This brought up the idea of *allometry*. [*greek: allos = different; metrie = to measure*]

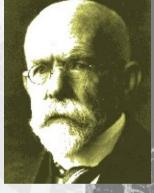
Allometric Scaling Definition

Allometry deals with

 measuring and comparing the relation of body size / mass to different biological parameters

Classical allometric equation (Otto Snell, 1892):

$$Y = Y_0 \cdot M^b$$
 ,



[5]

Allometric Scaling Definition

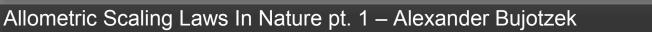
Allometry deals with

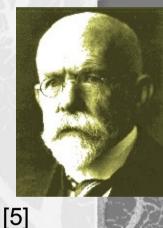
 measuring and comparing the relation of body size / mass to different biological parameters

Classical allometric equation (Otto Snell, 1892):

$$Y = Y_0 \cdot M^b$$
 ,

dependent parameter Y integration constant Y_0 body mass M scaling exponent b b > 0 pos. allometry, b < 0 neg. allometry, b = 1 isometry





Allometric Scaling Definition

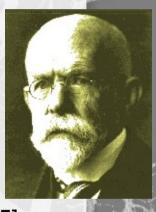
Allometry deals with

 measuring and comparing the relation of body size / mass to different biological parameters

Classical allometric equation (Otto Snell, 1892):

$$Y = Y_0 \cdot M^b$$

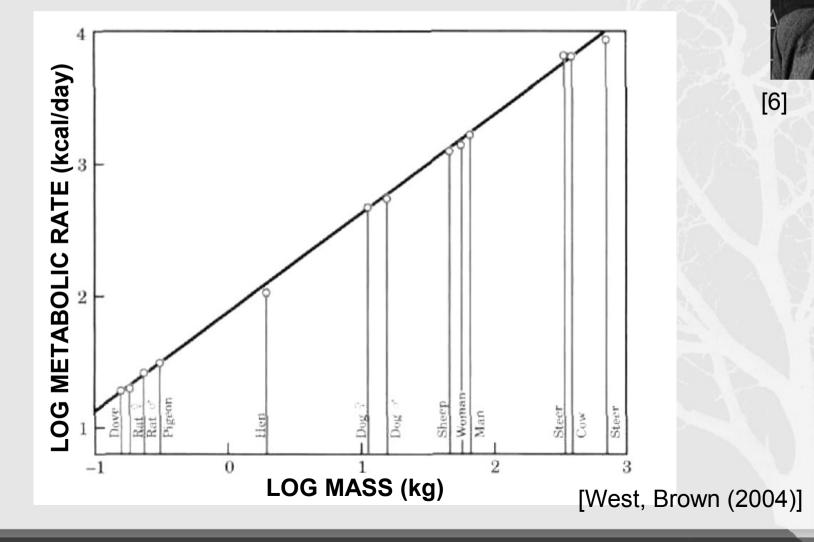
 $\log Y = b \, \log M + \log Y_0$



[5]

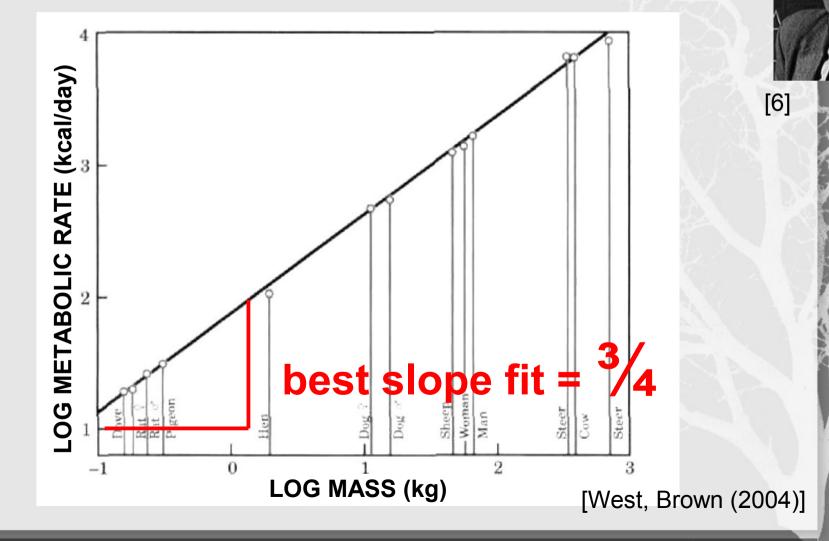
The work of Max Kleiber (1932):

metabolic rates (kcal/day) of mammals and birds

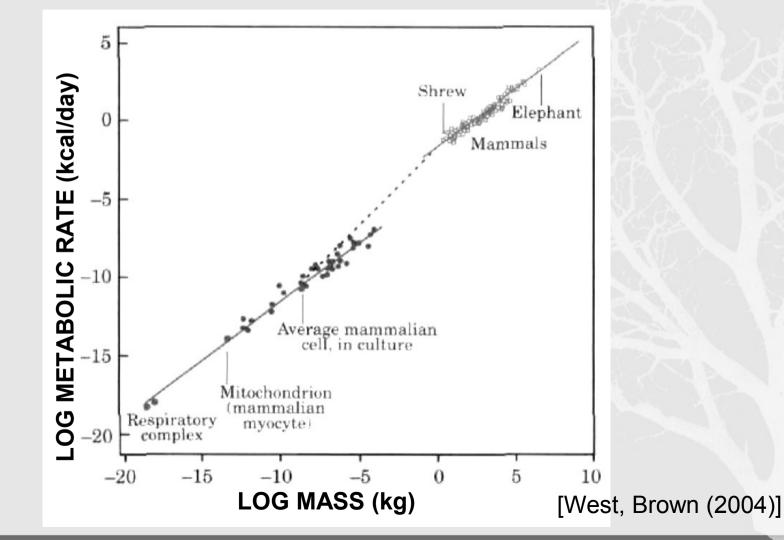


The work of Max Kleiber (1932):

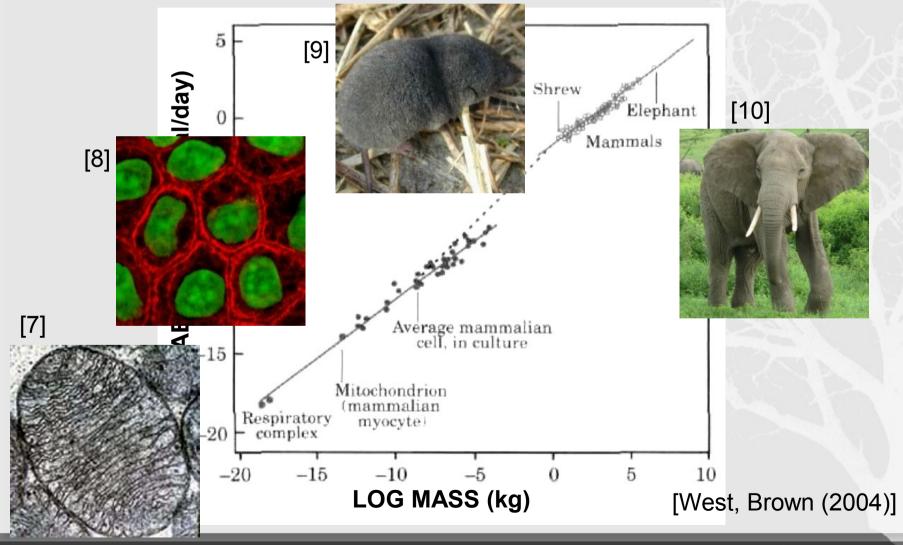
metabolic rates (kcal/day) of mammals and birds



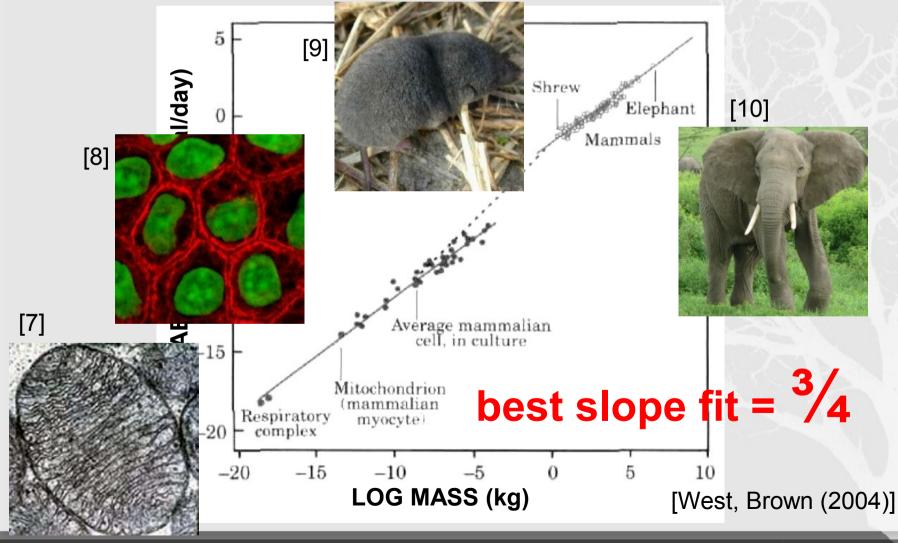
Extension of Kleiber's work: metabolic rates of life covering over 27 orders of magnitude in mass



Extension of Kleiber's work: metabolic rates of life covering over 27 orders of magnitude in mass



Extension of Kleiber's work: metabolic rates of life covering over 27 orders of magnitude in mass



This leads to Kleiber's law:

$$B \propto M^{3/4}$$

,

metabolic rate *B* body mass *M* metabolic exponent $b \approx 3/4$

This leads to Kleiber's law:

$$B \propto M^{3/4}$$

metabolic rate *B* body mass *M* metabolic exponent $b \approx 3/4$

Scaling with *multiples of 1/4* seems to be a common principle in nature...

Examples for quarter-power scaling:

- heart rate \rightarrow b \approx $\frac{1}{4}$
- life span \rightarrow b $\approx \frac{1}{4}$
- aorta / tree trunk diameters \rightarrow b $\approx \frac{3}{8}$
- genome lengths \rightarrow b $\approx \frac{1}{4}$
- population density in forests \rightarrow b \approx - $\frac{3}{4}$

As a consequence of quarter-power scaling, some *invariant quantities* emerge.

→ size-independent

Invariant quantities can be regarded as *fundamental, underlying constraints* of a system.

life span increases as $M^{\frac{1}{4}}$, heart rate decreases as $M^{\frac{1}{4}}$

- heartbeats / lifetime
 ≈ 1.5 · 10⁹
- ATP molecules synthesized / lifetime ≈ 10¹⁶

life span increases as $M^{\frac{1}{4}}$, heart rate decreases as $M^{\frac{1}{4}}$

- heartbeats / lifetime
 ≈ 1.5 · 10⁹
- ATP molecules synthesized / lifetime ≈ 10¹⁶

population density in forests decreases as M⁻³⁴, individual power use increases as M³⁴

power used by all individuals in any size class
 ≈ invariant

How can the predominance of quarter power scaling be explained mathematically? [West, Brown, Enquist 1997]

Life:

complex, self-sustaining, reproducing structures

need to service high numbers of microscopic units

Life:

complex, self-sustaining, reproducing structures

need to service high numbers of microscopic units with

- energy
- metabolites
- information

in a highly efficient way

Natural selection evolved *networks* to solve this:

- animal circulatory systems
- plant vascular systems
- ecosystems (e.g. forests)
- intracellular networks

Natural selection evolved *networks* to solve this:

- animal circulatory systems
- plant vascular systems
- ecosystems (e.g. forests)
- intracellular networks

These networks have to fulfill certain properties / there exist certain constraints...

Constraints on biological *networks*:

(1) the organism's whole volume has to be supplied
 → space filling, *fractal-like* branching pattern

Constraints on biological *networks*:

(1) the organism's whole volume has to be supplied
 → space filling, *fractal-like* branching pattern

(2) the network's final branch is a size-invariant unit
 → cappilaries, leaves, mitochondria, chloroplasts

Constraints on biological *networks*:

(1) the organism's whole volume has to be supplied
 → space filling, *fractal-like* branching pattern

(2) the network's final branch is a size-invariant unit
 → cappilaries, leaves, mitochondria, chloroplasts

(3) the energy to distribute resources is minimized
 → evolution towards optimal state

evolution of Sierpinski triangle, recursion depth four [11]

Fractals (lat. fractus: broken):

- fragmented geometric shapes
- each fragment is reduced-size copy of the whole
 → self-similarity
- simple and recursive definition

evolution of Sierpinski triangle, recursion depth four [11]

Fractal dimensionality:

- indicates "how completely a fractal will fill space"
- Mandelbrot (1975): fractals, usually, have nonwhole numbered dimensionality
- "too big to be thought of as one-dimensional, but too thin to be two-dimensional"

evolution of Sierpinski triangle, recursion depth four [11]

Example: dimensionality D of Sierpinski triangle

$$D = \lim_{\epsilon \to 0} \frac{\log N(\epsilon)}{\log(\frac{1}{\epsilon})} = \lim_{k \to \infty} \frac{\log 3^k}{\log 2^k} = \frac{\log 3}{\log 2} \approx 1.585$$

 ϵ = linear size of self-similar fragments $N(\epsilon) = \#$ self-similar fragments to cover whole original object k = recursion depth

evolution of Sierpinski triangle, recursion depth four [11]

Example: dimensionality D of Sierpinski triangle

$$D = \lim_{\epsilon \to 0} \frac{\log N(\epsilon)}{\log(\frac{1}{\epsilon})} = \lim_{k \to \infty} \frac{\log 3^k}{\log 2^k} = \frac{\log 3}{\log 2} \approx 1.585$$

in each step k 3^k new triangles with side length $(\frac{1}{2})^k$

 ϵ = linear size of self-similar fragments $N(\epsilon) = \#$ self-similar fragments to cover whole original object k = recursion depth

Derivation of Quarter-Power Scaling

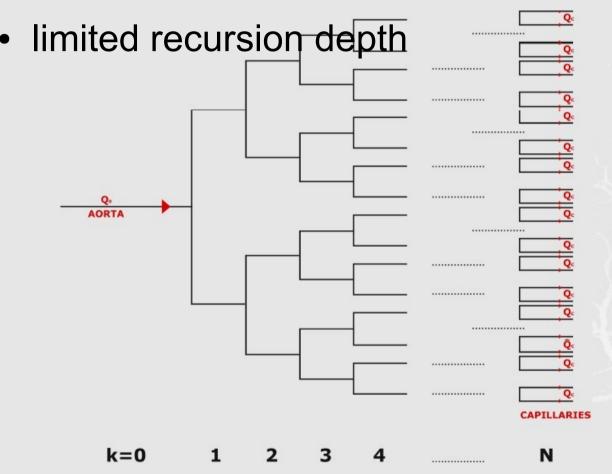
Fractal-like structures in nature:

- self-similarity not perfect, but stochastic
- limited recursion depth

Derivation of Quarter-Power Scaling

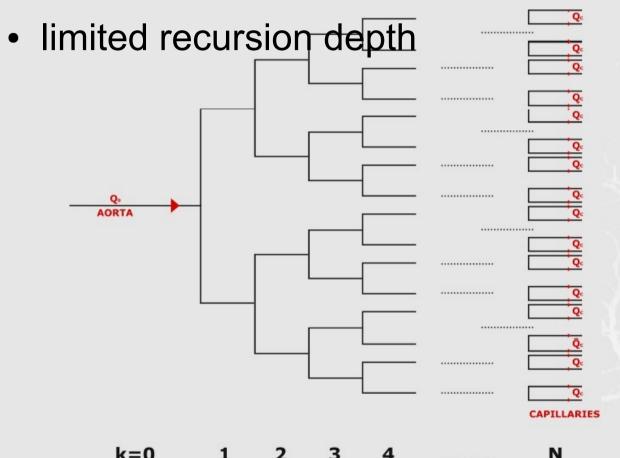
Fractal-like structures in nature:

• self-similarity not perfect, but stochastic



Fractal-like structures in nature:

• self-similarity not perfect, but stochastic



biological networks (here: circulatory system) are fractal-like

Allometric Scaling Laws In Nature pt. 1 – Alexander Bujotzek

- (1) space filling, fractal-like branching pattern
- (2) final branch is a size-invariant unit
- (3) energy to distribute resources is minimized (use of hydrodynamic laws)

strict mathematical derivation of exponent ³/₄ possible

- (1) space filling, fractal-like branching pattern
- (2) final branch is a size-invariant unit
- (3) energy to distribute resources is minimized (use of hydrodynamic laws)

strict mathematical derivation of exponent ³/₄ possible

 $B \propto M^{\frac{3}{4}}$

- (1) space filling, fractal-like branching pattern
- (2) final branch is a size-invariant unit
- (3) energy to distribute resources is minimized (use of hydrodynamic laws)

strict mathematical derivation of exponent ³/₄ possible

3 = dimensionality of space

 $B \propto M^{\frac{3}{4}}$

- (1) space filling, fractal-like branching pattern
- (2) final branch is a size-invariant unit
- (3) energy to distribute resources is minimized (use of hydrodynamic laws)

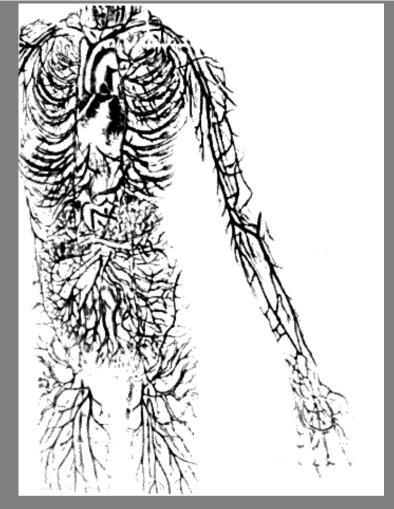
strict mathematical derivation of exponent ³/₄ possible

3 = dimensionality of space

4 = 3 + 1 = increase in dimensionality due to fractal-like space filling

Allometric Scaling Laws In Nature pt. 1 – Alexander Bujotzek

 $B \propto M^4$



Allometric Scaling Laws In Nature pt. 2

Marcel Grunert

Gute Ideen in der theoretischen Systembiologie, 10th of July 2007

Blood Circulation

Cardiovascular system

→ aorta, arteries, arterioles and capillaries

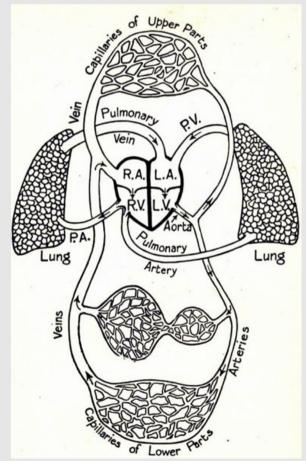
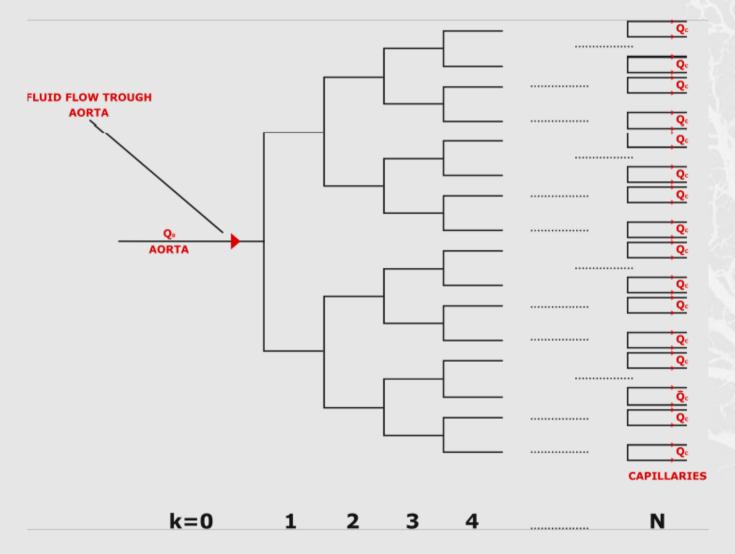


Figure: A representation of the circulatory system of the blood. (http://www.uh.edu/engines/)

Blood Circulation

→ N branchings from aorta (level 0) to capillaries (level N)



<u>*Recall*</u>: B \propto M^{3/4} (Kleiber's Law)

Since the fluid transports oxygen, nutrients, etc. for metabolism:

 $\label{eq:bound} \begin{array}{l} \textbf{B} \propto \textbf{Q}_{\textbf{0}} \\ (metabolic \ rate \ \propto \ volume \ flow \ rate) \end{array}$

 $\Rightarrow \text{ if } \mathbf{B} \propto \mathbf{M}^{a} \qquad (a \text{ will be determined later}) \\ then \ \mathbf{Q}_{\mathbf{0}} \propto \mathbf{M}^{a}$

Conservation of fluid:

$$Q_0 = N_c Q_c = N_c \pi r^2 c u_c$$

Conservation of fluid:

$$Q_0 = N_c Q_c = N_c \pi r_c^2 u_c$$

Volume flow rate

Conservation of fluid:

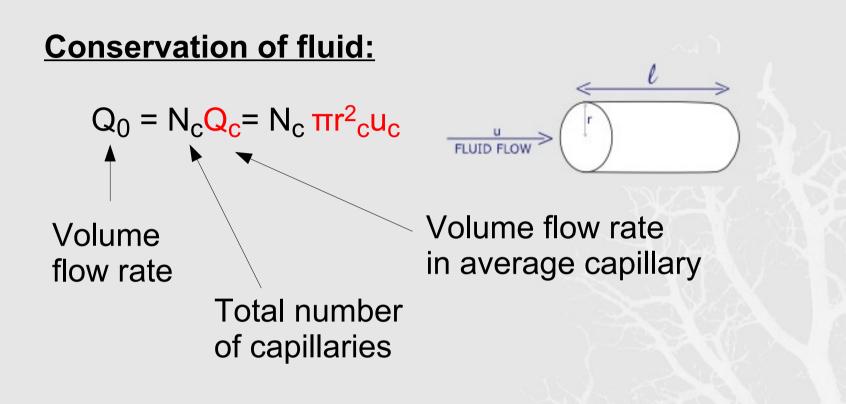
 $Q_0 = N_c Q_c = N_c \pi r^2 c u_c$ Volume
flow rate
Total number
of capillaries

Conservation of fluid:

 $Q_0 = N_c Q_c = N_c \pi r_c^2 u_c$

Volume flow rate Volume flow rate in average capillary

Total number of capillaries



→ Capillary is an invariant unit (Recall: scale invariance)

Capillary is an invariant unit (Q_c is equal for all mammals)

⇒ number of capillaries (N_c) must scale in same way as the metabolic rate (B ∝ Q₀): B ∝ M^{3/4} then N_c ∝ M^{3/4} (*if a=3/4* → *to be shown*)

 $N_c \propto M^{3/4}$ but: total number of cells: $N_{cell} \propto M$ (linear)

⇒ number of cells fed by a single capillary increases as M^{1/4} (*efficiency increases with size*)

How do radii and length of tubes scale through the network?

- scale factors:
$$\beta_k = r_{k+1}/r_k$$
,
 $\gamma_k = l_{k+1}/l_k$

Recall: terminal branches of the network are invariant units

- ⇒ network must be a conventional self-similar fractal $(\beta_k = \beta, \gamma_k = \gamma \& n_k = n)$
- ⇒ number of branches increase in geometric proportion (N_k=n^k) as their size geometrically decreases from level 0 to N

 $N_c = n^N \Rightarrow$ number of generations of branches scales only logarithmically with size:

$$N = \frac{a \cdot \ln\left(M/M_0\right)}{\ln(n)}$$

⇒ a whale is 10⁷ times heavier than a mouse but has only about 70% more branchings from aorta to capillary

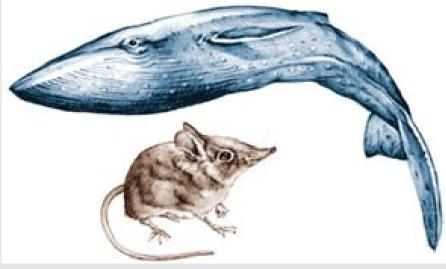


Figure: http://www.the-scientist.com

Total volume of fluid in the network ("blood" volume V_b): N

$$V_{b} = \sum_{k=0}^{N} N_{k} V_{k} = \sum_{k=0}^{N} \pi r_{k}^{2} l_{k} n^{k} \propto (\gamma \beta^{2})^{-N} V_{c}$$

Total volume of fluid in the network ("blood" volume V_b): N

$$V_{b} = \sum_{k=0}^{N} N_{k} V_{k} = \sum_{k=0}^{N} \pi r_{k}^{2} l_{k} n^{k} \propto (\gamma \beta^{2})^{-N} V_{c}$$

Total number of branches at level k

Total volume of fluid in the network ("blood" volume V_b): N

$$V_{b} = \sum_{k=0}^{N} N_{k} V_{k} = \sum_{k=0}^{N} \pi r_{k}^{2} l_{k} n^{k} \propto (\gamma \beta^{2})^{-N} V_{c}$$

Total number of Volume Volume

Volume of tube

Total volume of fluid in the network ("blood" volume V_b): N = N

$$V_{b} = \sum_{k=0}^{N} N_{k} V_{k} = \sum_{k=0}^{N} \pi r_{k}^{2} l_{k} n^{k} \propto (\gamma \beta^{2})^{-N} V_{c}$$

Total number of branches at level k

Volume of tube

Reflects the fractal nature of the system

Total volume of fluid in the network ("blood" volume V_b): N

$$V_{b} = \sum_{k=0}^{N} N_{k} V_{k} = \sum_{k=0}^{N} \pi r_{k}^{2} l_{k} n^{k} \propto (\gamma \beta^{2})^{-N} V_{c}$$

Total number of branches at level k

Volume of tube

Volume of capillary

Reflects the fractal nature of the system

Total volume of fluid in the network ("blood" volume $V_{\rm b}$): $V_{b} = \sum_{k=1}^{N} N_{k} V_{k} = \sum_{k=1}^{N} \pi r_{k}^{2} l_{k} n^{k} \propto (\gamma \beta^{2})^{-N} V_{c}$ $\land k=0$ Volume of Total number of Volume capillary branches at level k of tube Reflects the fractal nature of the system <u>Remember</u>: $N = \frac{a \cdot \ln(M/M_0)}{\ln(n)}$ & $V_b \propto (\gamma \beta^2)^{-N} V_c$ $a = - \ln(n)/\ln(\gamma\beta^2)$

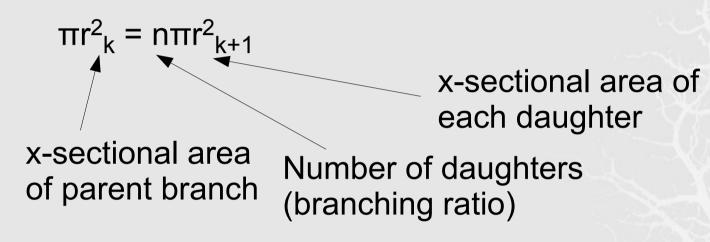
Further knowledge about β and γ :

N_kI^d_k ≈ N_{k+1}I^d_{k+1} ("volume preserving")
d-dimensional volume of space filled by branch of size I_k
Number of branches of size I_k

$$\Rightarrow \gamma_{k} = \frac{l_{k+1}}{l_{k}} = \left(\frac{N_{k}}{N_{k+1}}\right)^{1/d} = \frac{1}{n^{1/d}}$$

branches ratio

The sum of the cross-sectional areas of the daughter branches equals that of the parent:



$$\Rightarrow \beta_k = \frac{r_{k+1}}{r_k} = \frac{1}{n^{1/2}}$$

Recall: if B∞M^a ⇒ N_c=n^N∞M^a if V_b∞M and V_c∞M₀ ⇒ a = - ln n / ln (γβ²) with γ = n^{-1/3} (space-filling) β = n^{-1/2} (area-preserving) ⇒ a = ³⁄₄ (independent of n)

In d-Dimensions: $B \propto M^{d/(d+1)}$

 \Rightarrow we live in 3 spatial dimensions, so B \propto M^{3/4}

- "3" represents dimensionality of space
- "4" increase in dimensionality due to fractal-like space filling

Radius and length of aorta:

• Radius:
$$r_0 = \beta^{-N} r_c = N_c^{1/2} r_c \Rightarrow r_0 \propto M^{3/8}$$

• Length:
$$l_o = \gamma^{-N} r_c = N_c^{1/3} l_c \Rightarrow l_0 \propto M^{1/4}$$

Hydrodynamic resistance of the network:

$$\sim 1/M^{3/4}$$

⇒ Total resistance decrease with size (small may be beautiful but large is more efficient)

Respiratory system

- Tracheal radius ~ $M^{3/8}$
- Oxygen consumption rate $\sim M^{3/4}$
- Total resistance $\sim 1/M^{3/4}$
- Volume flow to lung $\sim M^{3/4}$

Figure: 3D-Lung (*http://www.newportbodyscan.com*)

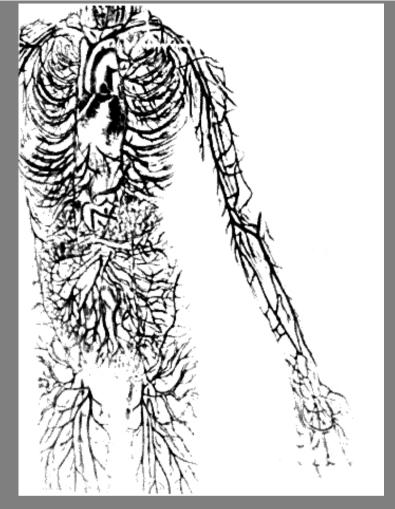
Overview of further scaling laws

Physiological variables	Dimension	Scaling exponent
Heart Beat Rate	-1	-1⁄4
Period of Heart Beat	1	1⁄4
Life Span	1	1⁄4
Diameter of Tree Trunks	3	3/4
Diameter of Aortas	3	3/4
Brain Mass	3	3/4
Metabolic Rate	3	3/4

Model (Y=Y₀M^b) predicts the known scaling relations of mammalian systems:

Cardiovascular			
Variable	Exponent		
	Predicted	Observed	
Aorta radius	3/8 = 0.375	0.36	
Circulation time	1/4 = 0.25	0.25	
Total resistance	-3/4 = -0.75	-0.76	
Metabolic rate	3/4 = 0.75	0.75	

Respiratory			
Variable	Exponent		
	Predicted	Observed	
Tracheal radius	3/8 = 0.375	0.39	
Volume flow to lung	3/4 = 0.75	0.80	
Respiratory frequency	-1/4 = -0.25	-0.26	
Total resistance	-3/4 = -0.75	-0.70	
Oxygen consumption rate	3/4 = 0.75	0.76	

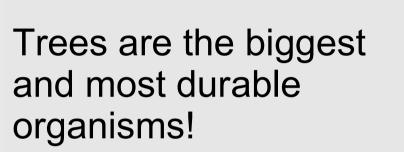


Allometric Scaling Laws In Nature pt. 3

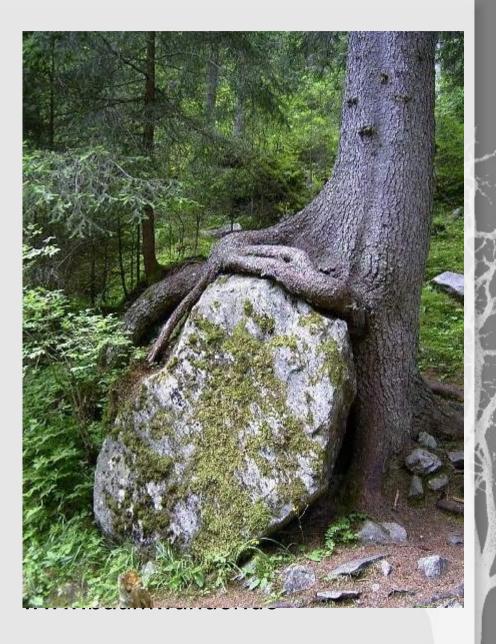
Katharina Albers

Gute Ideen in der theoretischen Systembiologie, 10th of July 2007

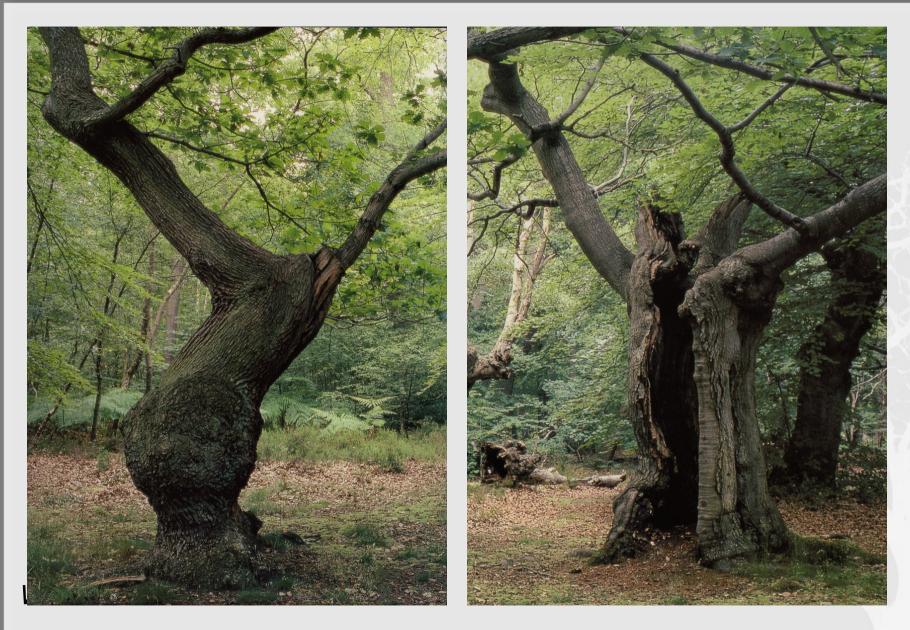
Motivation



Why do they grow as they do?



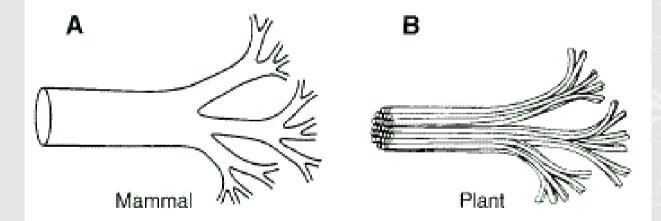
Motivation



Allometric Scaling Laws In Nature pt. 3 – Katharina Albers

Scaling laws for trees

Diameter of aortas Diameter of tree trunks in both cases: b ≈ 3/8

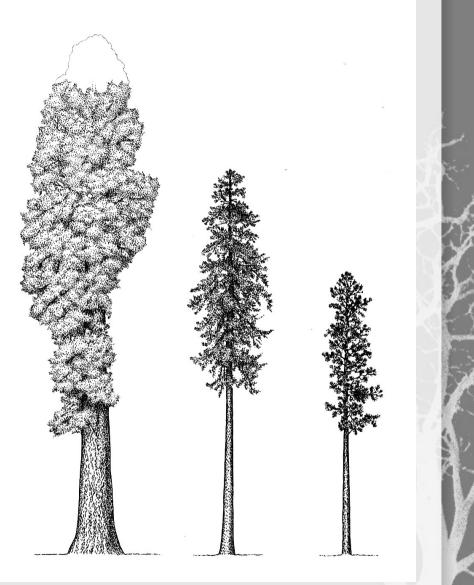


West et al: A General Model for ... (1997)

Scaling laws for trees

•Diameter of trunk in proportion to the height bigger in larger trees

 Can be explained with help of dimensional analysis



McMahon et al: Form und Leben (1985)

Dimensional Analysis

- Conceptual tool applied in physics, chemics and engineering
- To understand physical situations involving a mix of different kinds of physical quantities
- Used to form reasonable hypotheses about complex physical situations
- Example: Mach-number. Air stream around plane changes dramatically when it's faster than Sound. Dimensionless relation flight velocity/acoustic velocity given by Mach-number.

 Important variables: Diameter Height Elastic modulus Relative density

• Dimensional analysis yields:

 $\frac{Elastic modulus \cdot (Diameter)^2}{Gravity \cdot Relative density \cdot (Height)^3}$

 Relation of elastic modulus and specific gravity alike for living wood

$$\stackrel{(Diameter)^2}{(Height)^3} \quad nearly \ constant$$

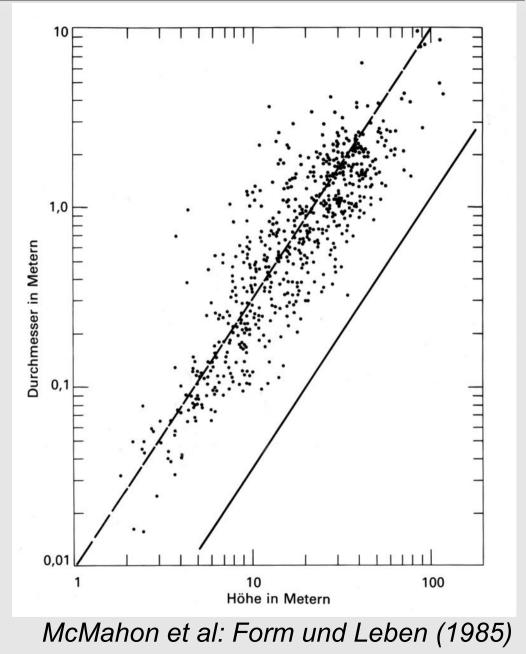
Height \propto *Diameter*^{2/3}

Same conclusion by Greenhill in 1881, but with different arguments:

How high can a (cylindric) flag pole become without collapsing?

Laws of solid mechanics: A pole with diameter 53 cm can be 91 m high at most.

Complies with conclusion of dimensional analysis!!



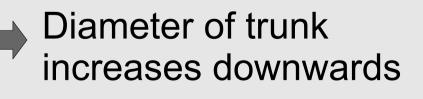
- Trees react on outer stimuli like gravity or wind by thickening according to the stress
- Controlled by growth hormone auxin, which supports growth of cambium
- If trees in the greenhouse are bend regularly, the trunk grows bigger, and trees outside shouldn't be supported for too long, because they cannot stand alone afterwards

 stems represent a mechanical optimum with respect to tapering, branch and root junctions, and inner architecture

www.umdiewelt.de

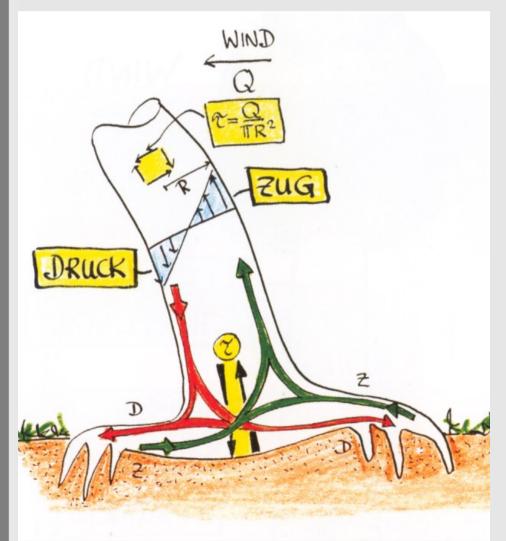
Trees are perfect selfadjusting optimizers:

- grow according to forces
- aim at an even distribution of the mechanical stresses



Mattheck: Warum alles kaputt geht (2003)

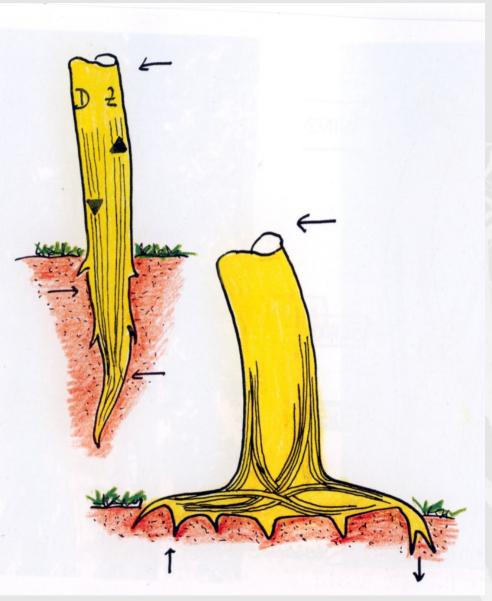
the term to the term



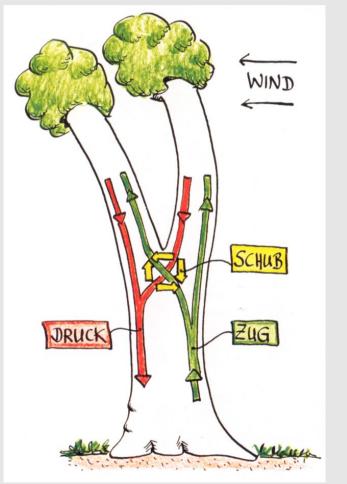
In transition of trunk and radix tractive efforts and compressive forces cross

Mattheck: Warum alles kaputt geht (2003)

 Woodfibres run unfavourably

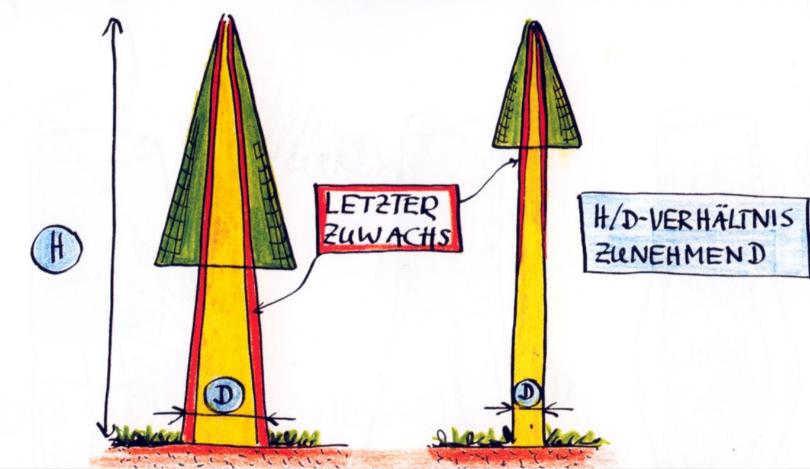


Mattheck: Warum alles kaputt geht (2003)



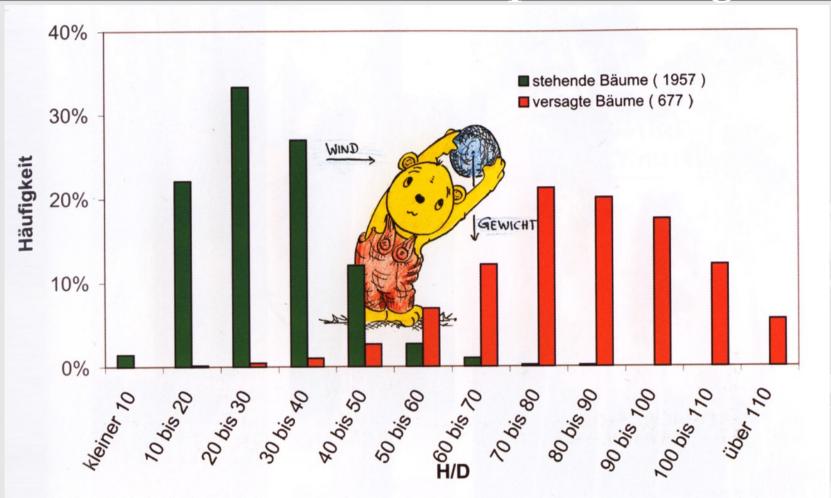
Mattheck: Warum alles kaputt geht (2003)

In bifurcations the same forces take effect



Mattheck: Warum alles kaputt geht (2003)

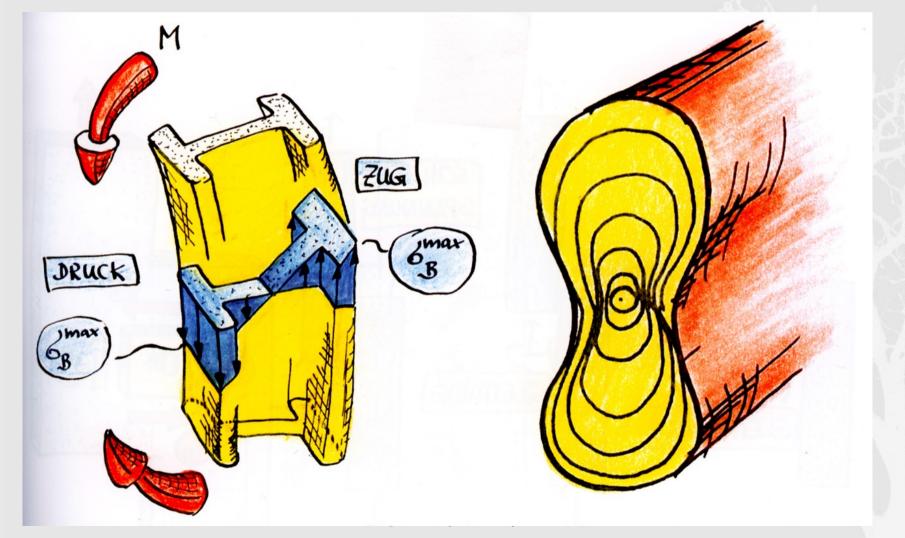
 Increasing trunk-diameter only in vital trees with low top

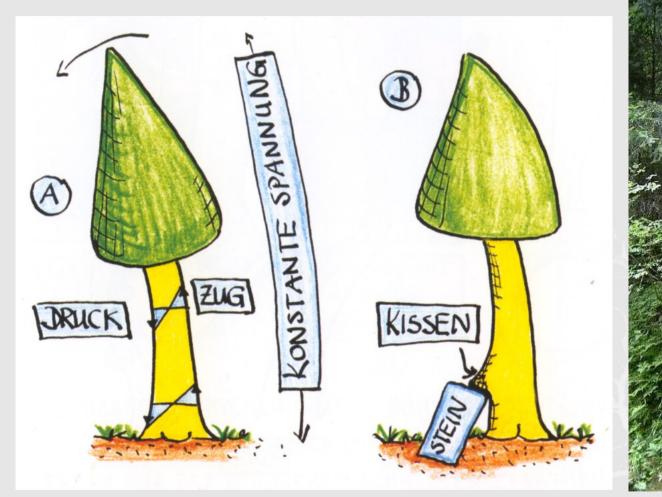


Mattheck: Warum alles kaputt geht (2003)

 Rule of thump: with relation H/D > 50, tree likely to collaps

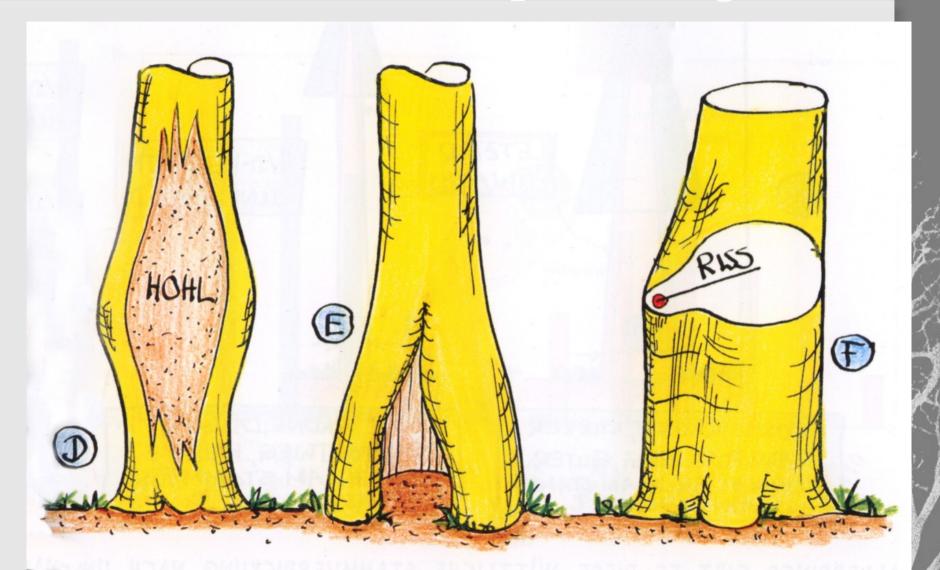
• Radix forms an eight, alike the I-beam



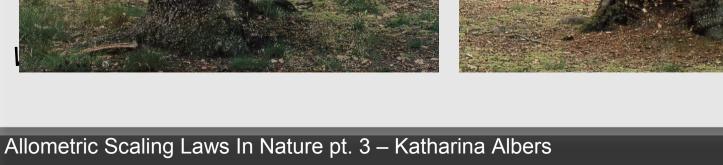


Mattheck: Warum alles kaputt geht (2003)

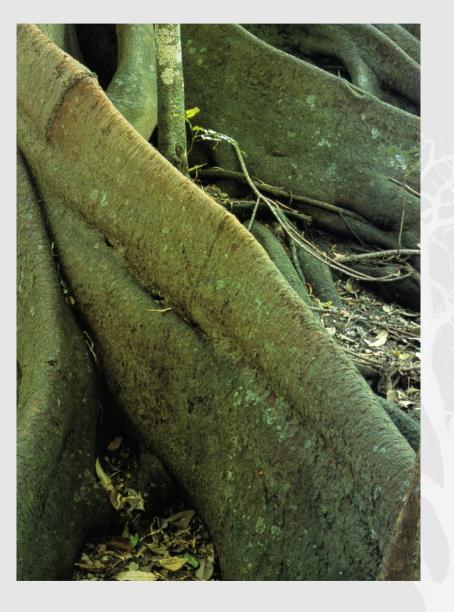
www.baumwunder.de



Mattheck: Warum alles kaputt geht (2003)



In tropical rain forest trees have huge wide-spread roots, because they grow very high



References

- "A General Model for the Origin of Allometric Scaling Laws in Biology", Geoffrey B. West, James H. Brown, Brain J. Enquist, Science, Vol. 276, 1997
- "Scaling Laws in Biology: Growth, Mortality, Cancer and Sleep", Geoffrey B. West, http://online.itp.ucsb.edu/online/pattern_i03/west/
- "Metabolic Rate and Kleiber's Law" http://universe-review.ca/R10-35-metabolic.htm
- http://http://de.wikipedia.org/ Fraktal, Fraktale Dimension, Allometrie, Sierpinski-Dreieck, Immanuel Kant, Kleibers Gesetz
- http://en.wikipedia.org/
 Fractal, Fractal dimension, Allometry, Power law, Sierpinski triangle, Kleiber's law
- · Mattheck, C. (2003): Warum alles kaputt geht. Karlsruhe
- · Mattheck, C. (2006): Verborgene Gestaltgesetze der Natur. Karlsruhe
- · McMahon, T. & Bonner, J.T. (1985): Form und Leben. Heidelberg
- Prothero, J. (1999): Scaling of tree height and trunk diameter as a function of ring number.
 Trees Structure and Function, Volume 14, Heidelberg, pp 43-48
- · Linford, J.: Wunder der Welt, Bäume. Bath

References

- · www.sciencemag.org/feature/data/deutschman/param_tab.htm
- · www.baumrausch.de

Pictures

- (1) http://upload.wikimedia.org/wikipedia/de/3/3e/Charles_Darwin_1854.jpg
- (2) http://upload.wikimedia.org/wikipedia/commons/d/d3/Gregor_Mendel.png
- (3) http://www.smchamburg.de/bilder/veranstaltungen/anschippern2007/image/anschippern_2007_054.jpg
- (4) http://www.corsier-sur-vevey.ch/images/alinghi-sui64.jpg
- (5) http://www.nlkh-lueneburg.niedersachsen.de/notiz3.gif
- (6) http://animalscience.ucdavis.edu/memorial/MaxKleiber.gif
- (7) http://upload.wikimedia.org/wikipedia/en/6/68/Mitochondrion_186.jpg
- (8) http://upload.wikimedia.org/wikipedia/commons/7/7c/Epithelial-cells.jpg
- (9) http://upload.wikimedia.org/wikipedia/en/thumb/d/d4/Southern_shorttailed_shrew.jpg/250px-Southern_short-tailed_shrew.jpg
- (10) http://upload.wikimedia.org/wikipedia/commons/thumb/d/dc/Elephant_near_ndutu.jpg/25 0px-Elephant_near_ndutu.jpg
- (11) http://upload.wikimedia.org/wikipedia/commons/thumb/0/05/Sierpinski_triangle_evolution.svg/512px-Sierpinski_triangle_evolution.svg.png
- (12) http://upload.wikimedia.org/wikipedia/commons/thumb/e/ea/Romanesco.jpg/214px-Romanesco.jpg

Thanks for your attention!

http://blog.thiesen.org

Allometric Scaling Laws In Nature