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Introduction

„In jeder reinen Naturlehre ist nur 
soviel an eigentlicher Wissenschaft 
enthalten, als Mathematik in ihr 
angewandt werden kann.“

Immanuel Kant (1724 – 1804)
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Introduction

Physics and chemistry (e.g. Newton's laws) have
been elevated to true science...

qualitative  quantitative, predictive

But what about biology?

„In jeder reinen Naturlehre ist nur 
soviel an eigentlicher Wissenschaft 
enthalten, als Mathematik in ihr 
angewandt werden kann.“

Immanuel Kant (1724 – 1804)
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Introduction

We know about general principles:
● Mendelian laws of inheritance
● Natural selection (Darwin's theory of evolution)

[1] [2]
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Introduction

We know about general principles:
● Mendelian laws of inheritance
● Natural selection (Darwin's theory of evolution)

Does life have more, universal and quantifiable laws?
qualitative  quantitative, predictive

Scaling of biological systems might give us a hint...

[1] [2]
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Allometric Scaling Scaling?

Scaling laws deal with:
● measuring and comparing the relation of scale to 

the parameters of a system
● revealing scale invariant quantities

toy ship [3]

real ship [4]
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Allometric Scaling Scaling?

In physics, scaling laws typically...
● reflect underlying generic features and physical 

principles
● are independent of detailed dynamics and specific 

characteristics
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Allometric Scaling Scaling?

In physics, scaling laws typically...
● reflect underlying generic features and physical 

principles
● are independent of detailed dynamics and specific 

characteristics

Therefore, scaling also has relevance for biology.
This brought up the idea of allometry.
[greek: allos = different; metrie = to measure]
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Allometric Scaling Definition

Allometry deals with
● measuring and comparing the relation of body 

size / mass to different biological parameters

Classical allometric equation (Otto Snell, 1892):

Y = Y 0⋅M
b ,

[5]
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Allometric Scaling Definition

Allometry deals with
● measuring and comparing the relation of body 

size / mass to different biological parameters

Classical allometric equation (Otto Snell, 1892):

Y = Y 0⋅M
b ,

dependent parameter Y
integration constant Y 0

body massM
scaling exponentb
b  0  pos. allometry, b  0  neg. allometry, b = 1  isometry

[5]
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Allometric Scaling Definition

Allometry deals with
● measuring and comparing the relation of body 

size / mass to different biological parameters

Classical allometric equation (Otto Snell, 1892):

Y = Y 0⋅M
b

logY = b logM  logY 0

[5]
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Allometric Scaling Kleiber's Law

The work of Max Kleiber (1932):
metabolic rates (kcal/day) of mammals and birds
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Allometric Scaling Kleiber's Law

The work of Max Kleiber (1932):
metabolic rates (kcal/day) of mammals and birds
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best slope fit = ¾

[6]
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Allometric Scaling Kleiber's Law

Extension of Kleiber's work: metabolic rates of life
covering over 27 orders of magnitude in mass
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Allometric Scaling Kleiber's Law

Extension of Kleiber's work: metabolic rates of life
covering over 27 orders of magnitude in mass
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Allometric Scaling Kleiber's Law

Extension of Kleiber's work: metabolic rates of life
covering over 27 orders of magnitude in mass
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LOG MASS (kg)

best slope fit = ¾
[7]

[8]

[9]

[10]
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Allometric Scaling Kleiber's Law

This leads to Kleiber's law:

B ∝ M 3 /4 , metabolic rate B
body massM
metabolic exponent b≈ 3/ 4
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Allometric Scaling Kleiber's Law

This leads to Kleiber's law:

Scaling with multiples of ¼ seems to be a common
principle in nature...

B ∝ M 3 /4 , metabolic rate B
body massM
metabolic exponent b≈ 3/ 4
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Allometric Scaling Quarter-Power Scaling

Examples for quarter-power scaling:
● heart rate  b ≈ - ¼
● life span  b ≈ ¼
● aorta / tree trunk diameters  b ≈ ⅜
● genome lengths  b ≈ ¼
● population density in forests  b ≈ -¾
● ...
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Allometric Scaling Quarter-Power Scaling

As a consequence of quarter-power scaling, some
invariant quantities emerge.
 size-independent

Invariant quantities can be regarded as fundamental, 
underlying constraints of a system.
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Allometric Scaling Quarter-Power Scaling

life span increases as M¼, heart rate decreases as M-¼

● heartbeats / lifetime
≈ 1.5 · 109

● ATP molecules synthesized / lifetime
≈ 1016
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Allometric Scaling Quarter-Power Scaling

life span increases as M¼, heart rate decreases as M-¼

● heartbeats / lifetime
≈ 1.5 · 109

● ATP molecules synthesized / lifetime
≈ 1016

population density in forests decreases as M-¾, 

individual power use increases as M¾

● power used by all individuals in any size class
≈ invariant
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Modelling Approach

How can the predominance of quarter power scaling
be explained mathematically?
[West, Brown, Enquist 1997]

Allometric Scaling Laws In Nature pt. 1 – Alexander Bujotzek



24

Modelling Approach
Life:
complex, self-sustaining, reproducing structures

need to service high numbers of microscopic units
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Modelling Approach
Life:
complex, self-sustaining, reproducing structures

need to service high numbers of microscopic units
with
● energy
● metabolites
● information

in a highly efficient way 
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Modelling Approach

Natural selection evolved networks to solve this:
● animal circulatory systems
● plant vascular systems
● ecosystems (e.g. forests)
● intracellular networks
● ...
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Modelling Approach

Natural selection evolved networks to solve this:
● animal circulatory systems
● plant vascular systems
● ecosystems (e.g. forests)
● intracellular networks
● ...

These networks have to fulfill certain properties /
there exist certain constraints...
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Modelling Approach
Constraints on biological networks:

(1) the organism's whole volume has to be supplied
 space filling, fractal-like branching pattern
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Modelling Approach
Constraints on biological networks:

(1) the organism's whole volume has to be supplied
 space filling, fractal-like branching pattern

(2) the network's final branch is a size-invariant unit
 cappilaries, leaves, mitochondria, chloroplasts
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Modelling Approach
Constraints on biological networks:

(1) the organism's whole volume has to be supplied
 space filling, fractal-like branching pattern

(2) the network's final branch is a size-invariant unit
 cappilaries, leaves, mitochondria, chloroplasts

(3) the energy to distribute resources is minimized
 evolution towards optimal state
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Short Excourse: Fractals

Fractals (lat. fractus: broken):
● fragmented geometric shapes
● each fragment is reduced-size copy of the whole
 self-similarity

● simple and recursive definition

evolution of Sierpinski triangle, recursion depth four [11]
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Short Excourse: Fractals

Fractal dimensionality:
● indicates „how completely a fractal will fill space“
● Mandelbrot (1975): fractals, usually, have non-

whole numbered dimensionality
● „too big to be thought of as one-dimensional,

but too thin to be two-dimensional“

evolution of Sierpinski triangle, recursion depth four [11]
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Short Excourse: Fractals

D = lim0
log N 

log  1
 

= lim k∞
log 3k

log 2k
= log 3

log 2
≈ 1.585

Example: dimensionality D of Sierpinski triangle

 = linear size of self-similar fragments
N  = # self-similar fragments to cover whole original object
k = recursion depth

evolution of Sierpinski triangle, recursion depth four [11]
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Short Excourse: Fractals

D = lim0
log N 

log  1
 

= lim k∞
log 3k

log 2k
= log 3

log 2
≈ 1.585

Example: dimensionality D of Sierpinski triangle

 = linear size of self-similar fragments
N  = # self-similar fragments to cover whole original object
k = recursion depth

in each step k 3k new triangles with side length (½)k  

evolution of Sierpinski triangle, recursion depth four [11]
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Derivation of Quarter-Power Scaling
Fractal-like structures in nature:
● self-similarity not perfect, but stochastic
● limited recursion depth

[12]
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Derivation of Quarter-Power Scaling
Fractal-like structures in nature:
● self-similarity not perfect, but stochastic
● limited recursion depth

[12]
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Derivation of Quarter-Power Scaling
Fractal-like structures in nature:
● self-similarity not perfect, but stochastic
● limited recursion depth

biological networks (here: circulatory system) are fractal-like

[12]
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Derivation of Quarter-Power Scaling
(1) space filling, fractal-like branching pattern
(2) final branch is a size-invariant unit
(3) energy to distribute resources is minimized

(use of hydrodynamic laws)

strict mathematical derivation of exponent ¾ possible
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Derivation of Quarter-Power Scaling
(1) space filling, fractal-like branching pattern
(2) final branch is a size-invariant unit
(3) energy to distribute resources is minimized

(use of hydrodynamic laws)

strict mathematical derivation of exponent ¾ possible

B ∝ M
3
4
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Derivation of Quarter-Power Scaling
(1) space filling, fractal-like branching pattern
(2) final branch is a size-invariant unit
(3) energy to distribute resources is minimized

(use of hydrodynamic laws)

strict mathematical derivation of exponent ¾ possible

B ∝ M
3
4

3 = dimensionality of space
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Derivation of Quarter-Power Scaling
(1) space filling, fractal-like branching pattern
(2) final branch is a size-invariant unit
(3) energy to distribute resources is minimized

(use of hydrodynamic laws)

strict mathematical derivation of exponent ¾ possible

B ∝ M
3
4

3 = dimensionality of space

4 = 3 + 1 = increase in dimensionality 
due to fractal-like space filling
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Allometric Scaling Laws
In Nature pt. 2

Marcel Grunert

Gute Ideen in der theoretischen Systembiologie, 10th of July 2007
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Blood Circulation

Cardiovascular system
➔ aorta, arteries, arterioles and capillaries

Figure: A representation of the 
circulatory system of the blood. 
(http://www.uh.edu/engines/)
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Blood Circulation

➔ N branchings from aorta (level 0) to capillaries (level N)
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Conservation of Fluid

Recall: B ∝ M3/4 (Kleiber's Law)

Since the fluid transports oxygen, nutrients, etc. 
for metabolism:

B ∝ Q0 
(metabolic rate  volume flow rate)∝   

 ⇒ if B ∝ Ma (a will be determined later)
    then  Q0 ∝ Ma 

Conservation of fluid:

Q0 = NcQc= Nc πr2cuc
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Conservation of Fluid

Conservation of fluid:

Q0 = NcQc= Nc πr2cuc

Volume 
flow rate
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Conservation of Fluid

Conservation of fluid:

Q0 = NcQc= Nc πr2cuc

Volume 
flow rate

Total number 
of capillaries
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Conservation of Fluid

Conservation of fluid:

Q0 = NcQc= Nc πr2cuc

Volume 
flow rate

Total number 
of capillaries

Volume flow rate 
in average capillary
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Conservation of Fluid

Conservation of fluid:

Q0 = NcQc= Nc πr2cuc

Volume 
flow rate

Total number 
of capillaries

Volume flow rate 
in average capillary

→ Capillary is an invariant unit
    (Recall: scale invariance)
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Conservation of Fluid

Capillary is an invariant unit 
(Qc is equal for all mammals)

 ⇒ number of capillaries (Nc) must scale in same way as
    the metabolic rate (B ∝ Q0):
    B ∝ M3/4 then Nc∝ M3/4 (if a=3/4 → to be shown)

Nc∝ M3/4 but: total number of cells: Ncell∝ M(linear)

 ⇒ number of cells fed by a single capillary increases
    as M1/4 (efficiency increases with size)
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Characterize the Branching
How do radii and length of tubes scale through the network?

- scale factors: βk=rk+1/rk , 
    γk=lk+1/lk

Recall: terminal branches of the network are invariant units

 ⇒ network must be a conventional self-similar fractal
    (βk=β, γk= γ & nk= n)

 ⇒ number of branches increase in geometric proportion
    (Nk=nk) as their size geometrically decreases from 
    level 0 to N
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Characterize the Branching
Nc=nN  ⇒ number of generations of branches scales

     only logarithmically with size:

 ⇒ a whale is 107 times heavier than a mouse but
    has only about 70% more branchings from aorta
    to capillary

 

Figure: http://www.the-scientist.com

N=
a⋅ln M /M 0

ln n
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Characterize the Branching
Total volume of fluid in the network (“blood” 
volume Vb):

 

V b=∑
k=0

N

N kV k=∑
k=0

N

 r k
2 l k n

k  ∝ (γβ2)-NVc
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Characterize the Branching
Total volume of fluid in the network (“blood” 
volume Vb):

 

V b=∑
k=0

N

N kV k=∑
k=0

N

 r k
2 l k n

k  ∝ (γβ2)-NVc

Total number of
branches at level k
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Characterize the Branching
Total volume of fluid in the network (“blood” 
volume Vb):

 

V b=∑
k=0

N

N kV k=∑
k=0

N

 r k
2 l k n

k  ∝ (γβ2)-NVc

Total number of
branches at level k

Volume 
of tube
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Characterize the Branching
Total volume of fluid in the network (“blood” 
volume Vb):

 

V b=∑
k=0

N

N kV k=∑
k=0

N

 r k
2 l k n

k  ∝ (γβ2)-NVc

Total number of
branches at level k

Volume 
of tube

Reflects the fractal 
nature of the system
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Characterize the Branching
Total volume of fluid in the network (“blood” 
volume Vb):

 

V b=∑
k=0

N

N kV k=∑
k=0

N

 r k
2 l k n

k  ∝ (γβ2)-NVc

Total number of
branches at level k

Volume 
of tube

Reflects the fractal 
nature of the system

Volume of
capillary
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Characterize the Branching
Total volume of fluid in the network (“blood” 
volume Vb):

 

V b=∑
k=0

N

N kV k=∑
k=0

N

 r k
2 l k n

k  ∝ (γβ2)-NVc

Total number of
branches at level k

Volume 
of tube

Reflects the fractal 
nature of the system

Remember:     &

a = - ln(n)/ln(γβ2)

Volume of
capillary

N=
a⋅ln M /M 0

ln n
Vb  ∝ (γβ2)-NVc
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Derivation of ¾ Exponent
Further knowledge about β and γ:

Nkldk ≈ Nk+1ldk+1 (“volume preserving”)

d-dimensional volume of space 
filled by branch of size lk

Number of branches of size lk

 ⇒ k=
l k1

l k
=

N k

N k1


1/d

=
1
n1/d

branches ratio
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Derivation of ¾ Exponent
The sum of the cross-sectional areas of the daughter
branches equals that of the parent:

πr2
k = nπr2

k+1

x-sectional area
of parent branch Number of daughters

(branching ratio)

x-sectional area of 
each daughter

 ⇒ k=
r k1

rk
= 1
n1 /2
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Derivation of ¾ Exponent

Recall: if B∝Ma ⇒ Nc=nN∝Ma 
  if Vb∝M  and Vc M∝ 0

 ⇒ a = - ln n / ln (γβ2)

with γ = n-1/3 (space-filling)
  β = n-1/2 (area-preserving)

⇒ a = ¾ (independent of n)
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Derivation of ¾ Exponent

In d-Dimensions: B ∝ Md/(d+1)

 ⇒ we live in 3 spatial dimensions, so B ∝ M3/4

● “3” represents dimensionality of space
● “4” increase in dimensionality due to
  fractal-like space filling
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Further Scaling Laws

Radius and length of aorta:

● Radius:

● Length: 

r 0=−N rc=N c
1 /2r c ⇒r0 ∝ M3/8 

l o=−N r c=N c
1/3l c ⇒l0 ∝ M1/4 

Hydrodynamic resistance of the network:

∼ 1/M3/4

 ⇒ Total resistance decrease with size
    (small may be beautiful but large is more efficient)
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Further Scaling Laws

Respiratory system

● Tracheal radius ∼ M3/8

● Oxygen consumption rate ∼ M3/4

● Total resistance  ∼ 1/M3/4

● Volume flow to lung  ∼ M3/4

Figure: 3D-Lung
(http://www.newportbodyscan.com)
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Further Scaling Laws

Overview of further scaling laws

Allometric Scaling Laws In Nature pt. 2 – Marcel Grunert
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Further Scaling Laws

Model (Y=Y0Mb) predicts the known scaling relations
of mammalian systems:
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Allometric Scaling Laws
In Nature pt. 3

Katharina Albers

Gute Ideen in der theoretischen Systembiologie, 10th of July 2007
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Motivation

Trees are the biggest 
and most durable 
organisms!

Why do they grow 
as they do?

  www.baumwunder.de
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Motivation

Wunder der Welt: Bäume

Allometric Scaling Laws In Nature pt. 3 – Katharina Albers
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Scaling laws for trees

Allometric Scaling Laws In Nature pt. 3 – Katharina Albers

Diameter of aortas
Diameter of tree trunks

in both cases: b ≈ ⅜

   West et al: A General Model for ... (1997)
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Scaling laws for trees

●Diameter of trunk in 
   proportion to the 
   height bigger in larger 
   trees 

● Can be explained 
   with help of 
   dimensional analysis

McMahon et al: Form und Leben (1985)
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Dimensional Analysis

●  Conceptual tool applied in physics, chemics and 
engineering
● To understand physical situations involving a mix of 
different kinds of physical quantities
● Used to form reasonable hypotheses about complex 
physical situations

● Example: Mach-number. Air stream around plane 
changes dramatically when it's faster than Sound. 
Dimensionless relation flight velocity/acoustic velocity 
given by Mach-number.
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Scaling laws for trees

● Important variables:
Diameter
Height
Elastic modulus
Relative density

●  Dimensional analysis yields:

Allometric Scaling Laws In Nature pt. 3 – Katharina Albers

Elasticmodulus⋅Diameter 2

Gravity⋅Relative density⋅Height 3
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Scaling laws for trees

●  Relation of elastic modulus and specific gravity 
alike for living wood

nearly constant

Allometric Scaling Laws In Nature pt. 3 – Katharina Albers

Diameter 2

Height 3

Height ∝ Diameter2 /3
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Scaling laws for trees
Same conclusion by Greenhill in 1881, but with 
different arguments:

How high can a (cylindric) flag pole become 
without collapsing?

Laws of solid mechanics:
A pole with diameter 53 cm can be 91 m high at 
most.

Complies with conclusion of dimensional 
analysis!!

Allometric Scaling Laws In Nature pt. 3 – Katharina Albers
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Scaling laws for trees

Allometric Scaling Laws In Nature pt. 3 – Katharina Albers

  
McMahon et al: Form und Leben (1985)
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Self-optimizing Trees

● Trees react on outer stimuli like gravity or wind by 
thickening according to the stress
● Controlled by growth hormone auxin, which supports 
growth of cambium
● If trees in the greenhouse are bend regularly, the 
trunk grows bigger, and trees outside shouldn't be 
supported for too long, because they cannot stand 
alone afterwards

Allometric Scaling Laws In Nature pt. 3 – Katharina Albers
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Self-optimizing Trees

 

 stems represent a 
mechanical optimum 
with respect to tapering, 
branch and root 
junctions, and inner 
architecture

  www.umdiewelt.de
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Self-optimizing Trees

 Trees are perfect self-
adjusting optimizers:

●  grow according to 
forces

●  aim at an even 
distribution of the 
mechanical stresses

Diameter of trunk 
increases downwards    Mattheck: Warum alles kaputt 

geht (2003)

Allometric Scaling Laws In Nature pt. 3 – Katharina Albers
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Self-optimizing Trees

● In transition of trunk and 
radix tractive efforts and 
compressive forces 
cross

Mattheck: Warum alles kaputt geht (2003)
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Self-optimizing Trees

● Woodfibres run 
 unfavourably

  

   Mattheck: Warum alles kaputt geht (2003) 
Allometric Scaling Laws In Nature pt. 3 – Katharina Albers
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Self-optimizing Trees

Mattheck: Warum alles kaputt geht (2003)

● In bifurcations the same forces take effect 
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Self-optimizing Trees

Mattheck: Warum alles kaputt geht (2003)

● Increasing trunk-diameter only in vital trees with low 
top 
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Self-optimizing Trees

Mattheck: Warum alles kaputt geht (2003)

● Rule of thump: with relation H/D > 50, tree likely to 
collaps
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Self-optimizing Trees
● Radix forms an eight, alike the I-beam

  Mattheck: Warum alles kaputt geht (2003)

Allometric Scaling Laws In Nature pt. 3 – Katharina Albers
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Self-optimizing Trees

 Mattheck: Warum alles kaputt geht (2003)  www.baumwunder.de
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Self-optimizing Trees

Mattheck: Warum alles kaputt geht (2003)
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Self-optimizing Trees

Wunder der Welt: Bäume

Allometric Scaling Laws In Nature pt. 3 – Katharina Albers
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Self-optimizing Trees

In tropical rain forest
trees have huge 
wide-spread roots,
because they grow 
very high

  Wunder der Welt: Bäume 
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