
Signal processing in nervous system - Hodgkin-Huxley model

Ulrike Haase

19.06.2007

Seminar

"Gute Ideen in der theoretischen Biologie / Systembiologie"

Signal processing in nervous system

- Nerve cell and Action Potential
 - Structure of neurons
 - Generation of action potential
- Hodgkin-Huxley model
 - Voltage clamp experiment
 - Action potential as a biophysical model
 - Action potential as mathematic model
 - Dynamic behaviour of Hodgkin Huxley modeled neuron

Nerve cell and action potential

nervous system

- collects information
- processes information
- elicits responses to the information

human brain

- about 100 billion neurons
- highly connected

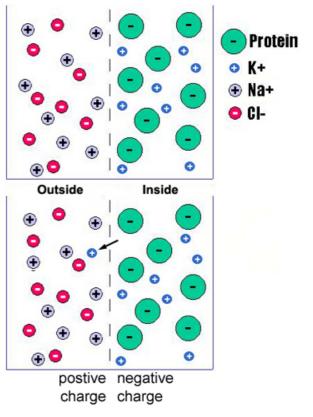
neuronal cells

- cell body (soma)
- dendrites : \rightarrow receive chemical messages from other neuronal cells
 - \rightarrow transmitting an electro-chemical signal to other neurons
- axon foot

٠

axon:

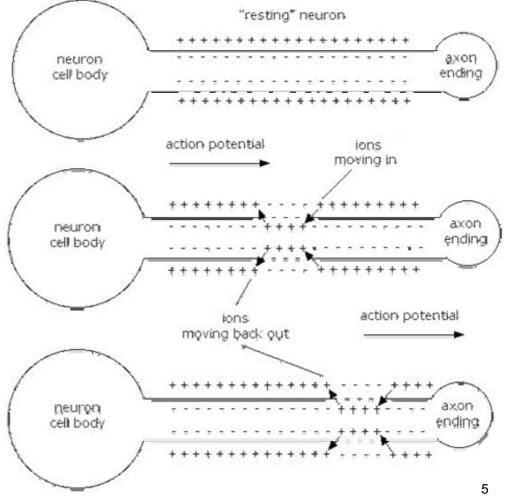
 \rightarrow transformation from electro-chemical into a chemical message



Nerve cell and action potential

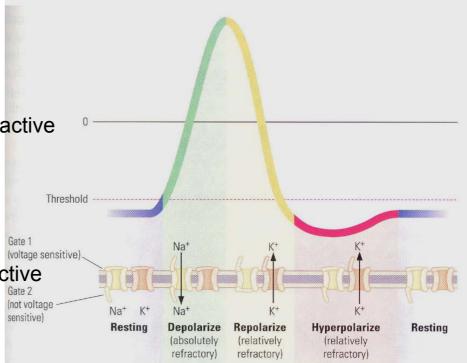
• nerve Signals

- changes in membrane voltage
- ion movements through membrane
- membrane potential
 - Different charges on both sides
 - Resting membrane: negative
 - Inside (cytoplasm): negative
 - Outside (extracellular): positive
 - Resting potential of -70 mV :
 - transmit no electric signal
 - Steady-state (concentration)
- stimuli by chemical transmitter or electric signal
 - influence the balance of ions between inside and outside
 - Response to stimuli: All-or-none principle
 - Stimulus threshold: -55 mV
 - < threshold → nothing happens
 - > threshold → generation of Action Potential

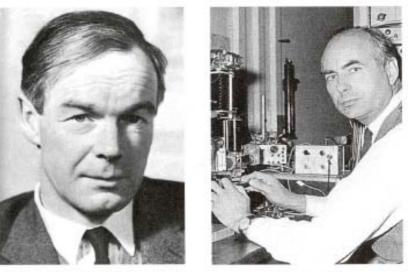


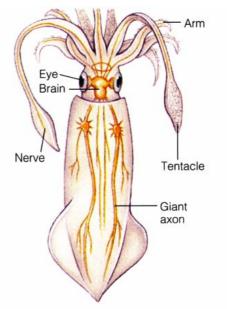
http://www.colorado.edu/kines/Class/IPHY3430-200/image/figure3a.jpg

Action potential


- action potential
 - rapid changes in membrane potential
 - Change from positive to negative and back
- Nerve Impulse
 - Move of action potential at axon

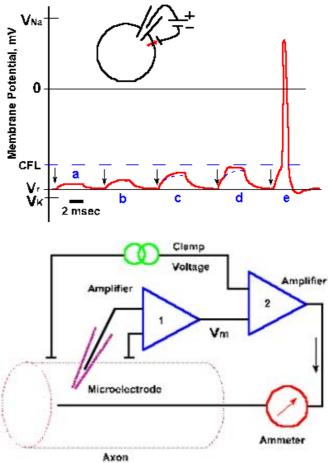
Action potential (AP) - Phases


- Resting (-70 mV)
 - Steady state
 - Ion conductance for Na⁺ very low
- Depolarization (+50 mV)
 - Voltage dependant Ion channel for Na⁺ active
 - High Na⁺-influx
- Repolarization
 - Na⁺ Channel closed
 - Voltage-dependant ion channel for K⁺ active
- Hyperpolarization (-85mV)
 - More K⁺ outside
 - Refractory period : no fire possible
 - Na⁺/K⁺ pump restores to -70 mV
- Resting \rightarrow again steady state


Hodgkin-Huxley Model

- developed in 1952 by Alan Lloyd Hodgkin and Andrew Huxley
- 1963 Nobel Prize
- Characterizes the initiation and propagation of the neuronal signals in giant axons of squids
- describing the dynamic behaviour of channel kinetics.
- mathematical model
 - \rightarrow explains the experimental results
- prediction of stimuli response possible

A.L. Hodgkin

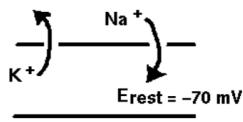

A.F. Huxley

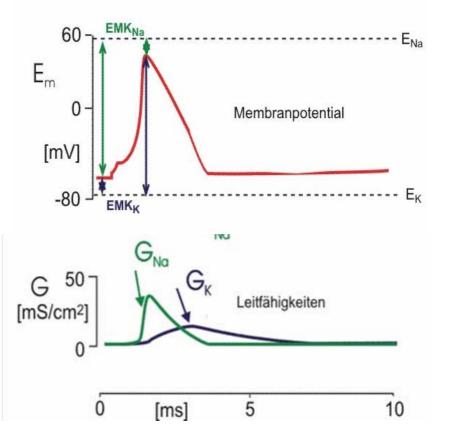
HH model – voltage clamp experiment

- Measurement of membrane voltage V_m
 - Intracellular micropipette electrode
 - Electrode in extra cellular fluid
- Possible to control $V_m \rightarrow$ extern Current
 - |1> : compare between V_m and V_{clamp}
- CFL = critical firing level
- Generation of AP in squid axon
- Only measurement of potential changes
- Could not measure influx / efflux currents

HH model – equilibrium potential & conductance

Equilibrium potential: E

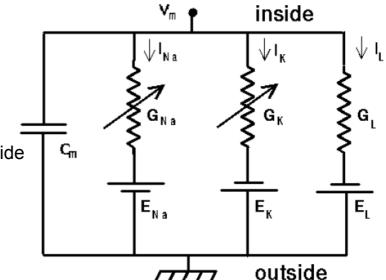

- E_{Na}
 - Na+ conc. outside higher than inside
 - Passive Influx → equilibrium potential = +45 mV
- Ε_κ
 - K+ conc. inside higher than outside
 - Passive efflux → equilibrium potential = -82 mV
- Na/K-ion pump
 - compensate passive currents of K+ / Na+
 - equilibrium potential Erest = -70 mV

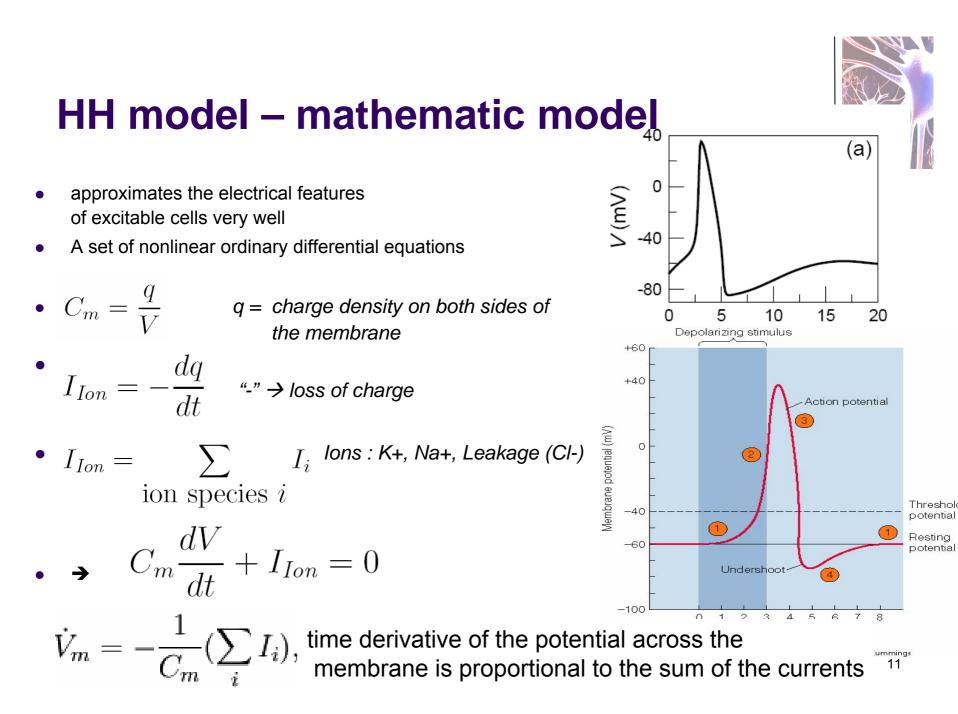

Action Potential \rightarrow changes in ionic conductance

- ↑ conductance = ↑ ion current
- ↓ conductance = ↓ ion current

Electric Conductance : g

- gNa = inward Na+ -influx
- gK = outward K+ -efflux
- gL = for other ions (Cl-, ...); L = leakage





HH model – equivalent electric model

- Each component of an excitable cell has a biophysical analog.
- Cm membrane capacitance
 - Separation of ions through membrane
 - Discharging = influx currents
 - Charging = efflux currents
- Vm membrane potential
 - Electric potential difference between inside and outside
- G_{Na} ,G_K , G_L
 - Different conductance values
 - Voltage dependant
- E_{Na}, E_K, E_L
 - Electrochemical gradient → driving the flow of ions
 - Represented by batteries (E)
- I_{Na}, I_K, I_L
 - ion current through ion channels
 - Flow because of different ion concentration

HH model – ionic currents

- following assumptions:
- Ionic currents obey Ohm's law : R = U / I

• I = g * V

- Driving force for current: $(V V_i)$.
 - Difference between the V and Vi
 - V = Vm and Vi for each ion $\rightarrow E_{Na}$, E_{K} , E_{L}
 - V_i = Nernstian equilibrium potential of corresponding ion species

•
$$V_i = \frac{RT}{F} \ln \frac{c_i(\text{outside})}{c_i(\text{inside})}$$

• Combination yields:

$$C_m \frac{dV}{dt} + I_{Ion} = 0 \quad \& \quad I_i = g_i (V - V_i).$$

$$\bullet \quad C_m \frac{dV}{dt} + \sum_i g_i (V - V_i) = 0 \qquad ^{12}$$

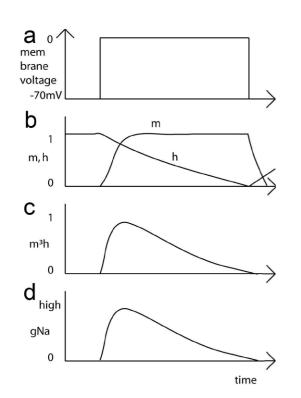
HH model – gating variables

• For every ion species: $I_i = g_i (V - V_i)$.

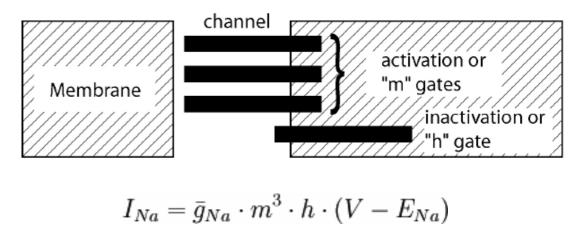
$$I_{Na} = g_{Na} \cdot (V - E_{Na}) \Rightarrow I_{Na} = \bar{g}_{Na} \cdot m^{3} \cdot h \cdot (V - E_{Na})$$
$$I_{K} = g_{K} \cdot (V - E_{K}) \Rightarrow I_{K} = \bar{g}_{K} \cdot n^{4} \cdot (V - E_{K})$$
$$I_{L} = g_{L} \cdot (V - E_{L}) \Rightarrow g_{L} = \text{const.}$$

- gating-variables :
 - Probabilistic Dynamic of ion channels
 - Fraction of open channels
 - Exp data \rightarrow m, n, h

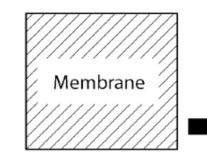
HH model – gating variables

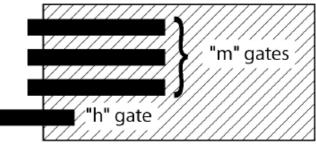

- Gating variables:
 - Time-dependant
 - With exponential functions (a_m(V), ß_m(V), …)
 - Parameter adjusted with exp. data

$$\frac{dn}{dt} = \alpha_n(V) \cdot (1-n) - \beta_n(V) \cdot n$$
$$\frac{dm}{dt} = \alpha_m(V) \cdot (1-m) - \beta_m(V) \cdot m$$
$$\frac{dh}{dt} = \alpha_h(V) \cdot (1-h) - \beta_h(V) \cdot h$$



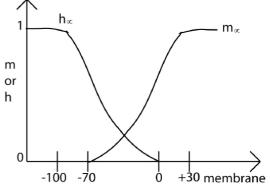
HH model – gating variables for Na⁺

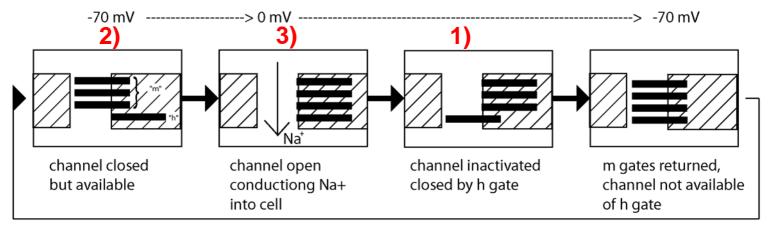

Postulated gating var.
 → structure properties of ion channels



Resting (polarized) membrane

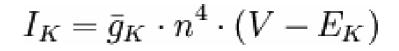
Depolarized for long time

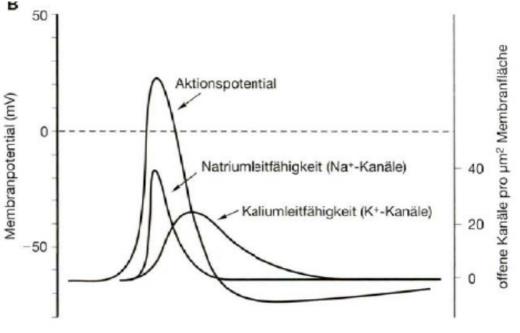




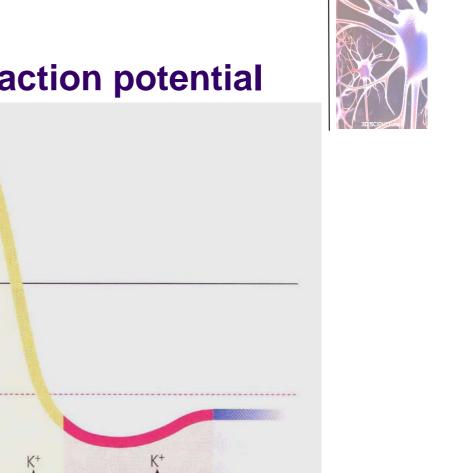
HH model – gating variables for Na⁺

- 1) Closed (inactive / not available)
- 2) Closed (active / available)
- 3) Open (active)

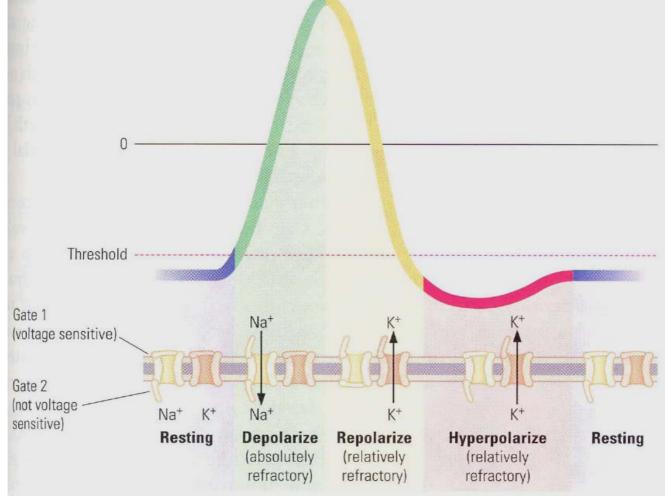


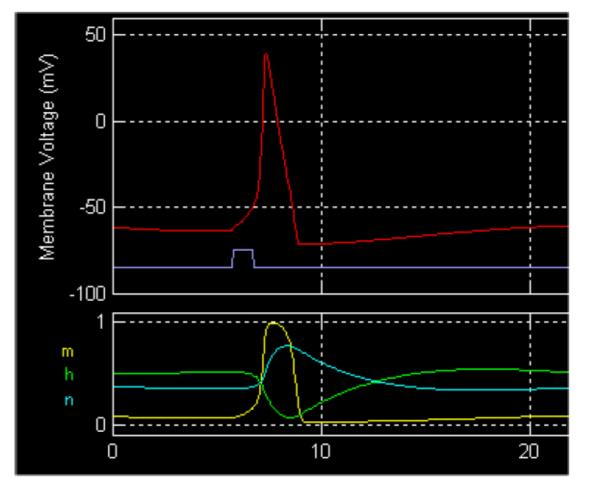


remain at -70 mV, h gate opens

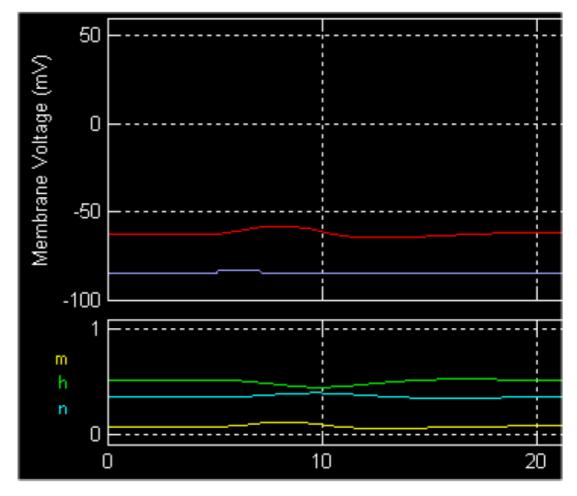

HH model – gating variable for K⁺

- Independet gating of 4 channel-subunits
- n = fraction of subunits in active status
- ↑ Voltage → n gates open
- No gate for inactivation
- Time delay

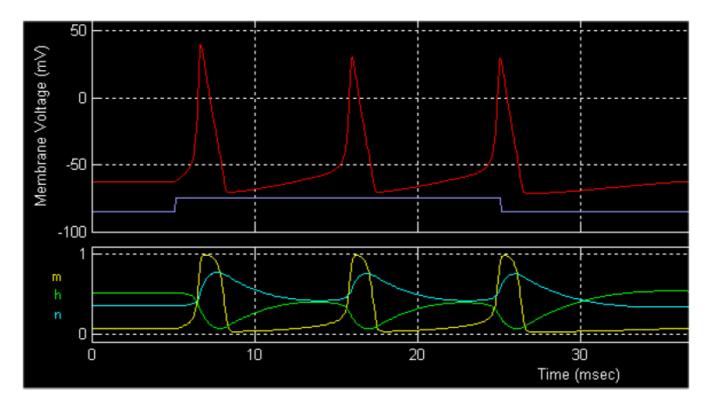




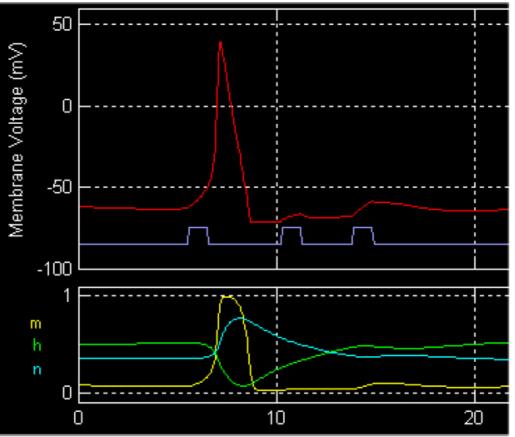
HH model – generation of action potential



- Stimulus of neuron > threshold
- Action potential



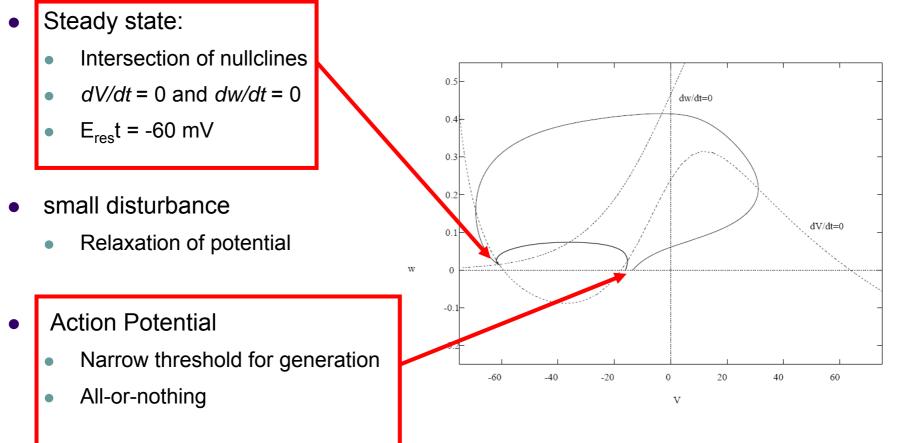
- Stimulus of neuron < threshold
- No action potential



- Continuous stimulus
- Repeating sequence of APs

- 2nd stimulus during refectory phase
- h = very slow
- Na⁺ channel still closed
- n = very high
- High K+ efflux
- No AP possible

HH model - simplification


• HH :

- too complex
- not analytic solvable, only numerical
- system of four non-linear differential equations: V_m, n, m, h
- Reduction necessary
- simplification
- *n* is replaced by its steady-state value
- 2) and *h* are replaced by a new variable *w*
- *a* and *b* are constants
- 4) n does not exist (K+)
- Reduced to a system of 2 variables
 - V_m (potential) and w(V)

$$\frac{dm}{dt} = \alpha_m(V) \cdot (1 - m) - \beta_m(V) \cdot m \rightarrow \text{value}$$
$$\frac{dh}{dt} = \alpha_h(V) \cdot (1 - h) - \beta_h(V) \cdot h \rightarrow W (V)$$
$$\frac{dn}{dt} = \alpha_n(V) \cdot (1 - n) - \beta_n(V) \cdot n$$

HH model - simplification

HH model - summary

- HH model describes initiation and propagation if action potentials
- Approximate the electrical characteristics of excitable cells
- Ion channels kinetics are described with gating variables
- Stimuli responses are predictable
- For model analysis \rightarrow reduction of HH model is needed

Quellen

- Hodgkin, A. L. and Huxley, A. F.: A Quantitative Description of Membrane Current and its Application to Conduction and Excitation in Nerve. Journal of Physiology 117: 500-544 (1952)
- Philipp Bender, Michael Klein, Jutta Mülle, Heiko Schepperle (Hrsg.)Interner Bericht 2004-10 der Fakultät für Informatik, Universität Karlsruhe ISSN 1432 7864
- Biologische und Kognitive Psychologie: Neurone, Aktionspotentiale und Synapsen (VL2) Felix A.
 Wichmann http://www.tuebingen.mpg.de/~felix
- Script from University in Munich: www.nefo.med.uni-uenchen.de/~vorlesung/compneurosciLMU.pdf
- Term paper: "seminar: informtaionsverarbeitung in Lebewesen" from University in Karlsruhe, Johann Weininger
- "computer simulation of chopper neurons: intrinsic oscillations and temporal processing in the auditory system" Dissertation from Dip.-Phys. Cand.med. Andreas Bahmer
- Script "Neuronal dynamics" from the course "Modellierung biologischer Systeme", Humboldt-Uni Berlin