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Topologic methods are used to characterize a particu- 
lar class of self-replicative reaction networks: the 
hypercycles. The results show that the properties of 
hypercycles are sufficient for a stable integration of the 
information contained in several self-replicative units. 
Among the catalytic networks studied, hypercyclic 
organization proves to be a necessary prerequisite for 
maintaining the stability of information and for pro- 
moting its further evolution. The techniques used in 
this paper, though familiar to mathematicians, are 
introduced in detail in order to make the logical 
arguments accessible to the nonmathematician. 

V. The Concrete Problem 

In Part A of this trilogy on hypercycles we have arrived 
at some essential conclusions about Darwinian systems 
at the molecular level, which may be summarized as 
follows: 
1. The target of selection and evolution is the quasi- 
species, which consists of a distribution of (genotypi- 
cally) closely related replicative units, centered around 
the copy (or a degenerate set of copies) corresponding 
to the phenotype of maximum selective value. 
2. The information content of this master copy-ex-  
pressed as the number v of symbols (nucleotides) 

replicative u n i t - i s  limited to Vm<~n?, where per 

or,(> 1) is the superiority of the master copy, i.e., an 
average selective advantage over the rest of the distri- 
bution, and qm, the average quality of symbol copying. 
Exceedingthis threshold of information content will 
cause an error catastrophe, i.e., a disintegration of 
information due to a steady accumulation of errors. 
3. A highly evolved enzymic replication machinery is 

necessary to reach a stable information content of a few 
thousand nucleotides. Such an amount would be just 
sufficient to code for a few protein molecules, as we find 
in present RNA phages. The physical properties in- 
herent in the nucleic acids allow for a reproducible 
accumulation of information of no more than 50 to 100 
nucleotides. 

The last of these three statements may be questioned on 
the basis of the argument that environmental factors 
- s u c h  as suitable catalytic surfaces or even protein- 
like enzyme precursors [ 4 7 ] - m a y  cause a consider- 
able shift of those numbers. In fact, the figures given 
were derived from equilibrium data, namely, from the 
free energies for (cooperative) complementary versus 
noncomplementary nucleotide interactions. Neverthe- 
less, we still consider them upper limits which in nature 
may actually be reached only in the presence of suitable 
catalysts or via annealing procedures. Laboratory 
experiments on enzyme-free template-induced polyme- 
rization lead to considerably lower numbers. On the 
other hand, environmental catalysts cannot yield fide- 
lities of symbol recognition exceeding the equilibrium 
figures, unless they themselves become part of the 
selectively optimizing s y s t e ~ - l ~ e r e  is no way of 
systematically favoring the functionally advantageous 
over the nonadvantageous interactions, other than via 
a stepwise selective optimization. The phage genomes 
could evolve in the form of single-stranded RNA 
molecules, only because a quite advanced replication 
and translation machinery was provided by the host 
cell. They are postcellular rather than precellular 
evolution products. Something like the magnitude of 
the information content of their genomes is just what 
would be required at the beginning of translation, 
namely, the reproducible information for a set of 
enzymes that could start a primitive translation mecha- 
nism. Hence the essential conclusion from Part A is: 

Naturwissenschaften 65, 7-41  (1978) �9 by Springer-Verlag 1978 7 



The start of translation requires an integration of 
several replicative units into a cooperative system, in 
order to provide a sufficient amount  of information for 
the build-up of a translation and replication machinery. 
Only such an integrated machinery can bring about a 
further increase of fidelity and hence allow for a 
corresponding expansion of the information content. 

How can one envisage an integration of competitive 
molecules, other than by ligation to one large re- 
plicative unit, which is prohibitive due to the threshold 
relation for vm~. (Note that the units to be integrated 
have to remain competitive with respect to their 
mutants in order to evolve further and not to lose their 
specific information.) Let us briefly investigate three 
possible choices: 

1. Coexistence. Stable mutual tolerance of self- 
replicative units in the absence of stabilizing in- 
teractions is possible only for individuals belonging to 
the same quasi-species. The quasi-species distribution 
could well provide favorable starting conditions for the 
evolution of a cooperative system. However, it does not 
favor the evolution of functional features. The coupling 
stabilizing the quasi-species is solely dictated by the 
genotypic kinship relations, which usually do not 
coincide with functional needs. Required is a set of 
selectively equivalent genotypes that complement each 
other at the phenotypic level. The quasi-species distri- 
butions as such does not meet these selection criteria. 

2. Compartmentation. Enclosure of a Darwinian sys- 
tem in a compartment will not provide a solution of this 
problem either. The main consequence ofcompartmen- 
tation is an enhancement of competition due to the 
restriction of living space and metabolic supply. Hence 
a compartment will only stabilize further a given 
selectively advantageous quasi-species; it will not favor 
the evolution of equivalent partners according to 
functional criteria, which requires the cooperating 
partners to diverge genotypically. A compartment, 
however, may offer advantages for a system that has 
already established a stable cooperation via functional 
linkages (cf. Part C). More sophisticated compartments 
such as present living cells, which comprise only one (or 
a few) copies of each replicative subunit together with a 
machinery for reproduction of the whole compartment 
require, of course, a symbol quality q,, which is adapted 
to the total information content according to the 
relationship for Vma x. In other words: They are subject 
to the same limitations as a fully ligated unit. 

3. Functional linkages. Selection of functionally 
cooperating partners may be effected via the functional 
linkages, which provide either a mutual catalytic 
enhancement of reproduction or a structural stabili- 
zation: A closer inspection of such linkages is the main 
topic of this paper. 

Let us aid our intuition again by playing another 
version of the computer game introduced in Part A. 
In the first part of the game the objective was to 
demonstrate the need for adapting the symbol- 
reproduction quality to the information content of 
the sentence to be reproduced. In the second part we 
assume now that the average quality factor ~,~ is not 
sufficient for a stable reproduction of the whole sen- 
tence in the form of a replicative unit, but suffices for 
copying units as small as single words. It refers to a 
natural situation in early evolution, where the physi- 
cal forces inherent in the nucleotides may have been 
sufficient for an evolution of stable t-RNA-like mol- 
ecules (=  single words), but did not admit the build- 
up of an - even primitive - translation apparatus ( --- a 
whole 'meaningful'  sentence). Accordingly, the com- 
puter is programmed just to reproduce single words 
using error rates sufficient to guarantee their stability 
against accumulation of errors. 
As a first variant of the game let us trY to establish a 
plain coexistence of the four words. For  this purpose we 
attribute to all correct words in the sentence the same 
selective value, while a mistake in any word is of 
disadvantage with respect to the correct word by a 
given factor (per bit). As before, the words are allowed 
to reproduce, the total number being limited to N 
copies. This variant, however, differs from the original 
game in that the individual words now behave as 
independent replicative units. Table 5 shows some 
typical results: Despite the fact that all words have the 
same selective value and are able to compete favorably 
with their error copies, the sentence as a whole is 
unstable. Only one of the four words can win the 
competition, but it cannot be predicted by any means 
which of the four words actually wins. One may 
characterize this situation by the tautology: 'survival of 
the survivor'. The term 'fittest' means nothing but the 
mere result of the contest. 

In the next variant of the game we introduce a 
functional linkage between related words: A given 
word provides catalytic help for the reproduction of the 
next word whenever it forms a meaningful sequence: 

The coupling is proportional to the population number 
of the catalyst (i.e., to the representation of the particu- 
lar word in the computer store). In other words, 
reproduction is facilitated according to a rate law: 

k l x  1 and 

k~xi+k'ix~x~_ 1 for i=2 ,3 ,4  
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Table 5. A game representing the competition of selectively equivalent 

The aim of this game is to preserve the information of the sentence: 

Each word symbolizes a replicative unit. All words have exactly the 
same selective value. The selective advantage per bit is 2.7. Each letter 
consists of 5 binary digits. 

Digit Digit Word Error 
mutation number quality expectation 
probability v factor value 
(1 -~/) Q=q~ e 
[ %] 

TAKE 3.15 20 0.53 0.63 

ADVANTAGE 1.4 45 0.53 0.63 

OF 6.3 10 0.53 0.63 

MISTAKE 1.8 35 0.53 0.63 

Since there is no coupling among the words every game ends with the 
selection of one word. All words are degenerate with respect to their 
selective values; therefore, each of the four words has an equal chance 
to be the survivor. Due to the high average error probability (~2 
per bit) the sentence as a whole (125 bits) is not a stable replicative 
unit. 

replicative units 

Below typical results often games are listed. The' X' indicates which 
word is selected, while all the others die out. The number denotes 
the generation after which selection is complete. 

Game TAKE ADVANTAGE OF MISTAKE Generation 
1 X 12 
2 X �9 15 
3 X 19 
4 X 23 
5 X 10 
6 X 20 
7 X 9 
8 X 13 
9 X 22 

10 X 26 

Error distribution of the selected word ADVANTAGE. The solid 
s 

line resembles the Poisson distribution ; where e= v (1-~/) is the 
k 

expectation value for an error in the word (v=45 bits). 
(The errors refer to one single digit. All wrong letters differ from the 
correct ones in only one of their five digits.) 

0 errors 1 error 2 errors 3 errors 

ADVANTAGE 

ADVANTAGE 

ADVANTAGE 

ADVANTAGE 

ADVANTAGE 

ADVANTAGE 

ADVANTAGE 

ADVANTAGE 

ADVANTAGE 

ADVANTAGE 

ADVANTAGE 

ADVANTAGE 

ADVANTAGE 

ADVANTAGE 

ADVANTAG! 

ADVANDAGE 

ADVARTAGE 

ADVINTAGE 

ADFANTAGE 

ADZANTAGE 

ANVANTAGE 

AHVANTAGE 

AHVANTAGE 

AFVANTAGE 

AFVANTAGE 

ADVANDACE 

ADVANDAIE [ 

ADVARXAGE ,, 

ADVINTBGE ITVANTA~U I 

x~ or xz_ 2, resp. being popula t ion  numbers ,  in this case 
referring to the words in the computer  store. The result 
of this game var iant  is usually fixation of the last word 
of the sentence, i.e., 'mis take ' ,  while all other words die 
out. Only  if the coupling is relatively weak and  a 
par t icular  kz value is chosen large enough do we find 
that  the corresponding word (i) may outgrow the 
others, representing selection among  (essentially) inde- 
penden t  competitors.  The result that  the last word in  
the sequence receives all the benefit  of coupl ing (when- 
ever the coupl ing terms are p redominant )  may be 
astonishing. One  would expect that  there must  at least 
exist a range of stability for the whole sentence. This is 
certainly true for a certain magn i tude  of the popu la t ion  
numbers ,  if the values of the rate parameters  obey a 
certain order with respect to the posi t ion of the words in 

the sequence. However,  fixed-point analysis as carried 
out  in Section VII will show that, even under  those 

special condit ions,  0nly the last member  in the chain 
will grow in p ropor t ion  to the total popula t ion ,  while 
all other members  assume essentially constant  popu-  
la t ion numbers ,  irrespective of the size of the total  
populat ion.  Hence, in a growing popula t ion ,  the re- 
lative abundance  of the last member  changes drastically 
unt i l  the system again reaches a range where only the 
a b u n d a n t  member  remains  stable. In  the process of 
molecular  evolut ion popu la t ion  numbers  of indi- 

viduals usually show those drastic changes, e.g., from 
one single m u t a n t  up to a detectable magn i tude  of 
(more than) bil l ions of copies. Thus  the result obta ined 
in our  game turns  out to be quite representat ive of what 
actually would happen  in nature.  
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The fact that linear coup l ing -  if it works at a l l -  feeds 
all the advantage forward to the last member in the 
sequence provides a strong hint for a possible solution 
of the problem: The couplings should form a closed 
loop: 

Then the enhancement due to coupling will cyclically 
fluctuate through all words of the sequence. Our sen- 
tence actually was chosen as to provide automati- 
cally such a cyclic overlap through the word 'mistake'. 
Since each word is a catalytic cycle (i.e., a self- 
replicative unit) the system represents a hypercycle of 
second degree according to our definitions introduced 
in Part A. The result of the game is represented in 
Figure 16. All four words show a stable steady-state 
representation with a periodic variation of their popu- 
lation numbers. The selective values of different words 

do not have to be the s a m e - w h i c h  would seem very 
improbable for any realistic system. Each word, fur- 
thermore, is represented by a stable distribution of 
mutants. Unless one of the words is wiped out by a 
fluctuation catastrophe (which becomes very improb- 
able at a sufficiently large number of copies) the 
population numbers will continue to oscillate. In other 
words: The information of the whole sentence is stable. 

VI. General Classification of Dynamic Systems 

VI.1. Definitions 

In the following sections we shall carry out a more 
rigorous mathematical analysis of dynamic systems, 
especially of those which are of importance in pre- 
cellular self-organization. To determine which systems 
are relevant we shall have to inspect different classes of 
reaction networks including both noncyclic and cyclic. 
Evolutionary processes can be described phenome- 
nologically by systems of differential equations, as has 
been shown for a particular case in Part A. The term 
dynamical system then refers to the complete manifold 
of solution curves of a given set of differential 
equations. 
Let us consider a general dynamic system that is 
described by n ordinary, first-order, and autonomous 
differential equations; 

dx i 
d t -2~=Ai (x~ ' "x~ ' k~ ' "k~ ;B) ;  i = l ,  2 , . . . ,n  (30) 

2 A K E  r A K E  TARE TAKE TAKE TAK~ TAK~ r a K E  Ta~E rAKE TAg~ TAKN TAK~ A . . . .  : r f 

~:N~X<~4:NU~:e~',KD~A~rAGI ADVANTAGE ~ - ADVANTAG E ADVg~lAue <N~NNN:~> am,tNTAGg ADVANTAGE ADVANTAGE ~ N N  ~'" ADVANTAGE ADVANTAGE ADVANTAGE ".~'~,~,: ,> aDVANTAG E ADVANTAGE 
ADVAHIAGE ADVANTAGE ADVANTAGE ADVANTAGE ADVANIAGE ADVANTAGE ADVANTAGE - ~ : ~ ;  > . . . . . . .  �9 . . . .  X ADVANTAGE ADVANTAGE ADVANTAGE A VANTAG~ DVANTAGE ADVANTAGE ADVANTAGE 
ADVANrAG~ ADVANTAGE ADVANTAGH mVANTAGE ADVANTAGE ADVANTAGE ADVANTAGE ADVANTAGE ADVANTAG~ ADVANTAGE ADVANTAGE ADVANTAGE ADVANTAGE mVANTAGE ADVANTAG - O , ~ A , ~ ~ , 

NTAGE AD~ANIAGE ADVANTAGE ADVANTAGE ADVANTAGE ADVANTAGE ~VANTAgE ADVANTAG~ ADVANTAGE ADVANTAGE ADVANTAGE ADVANTAG~ ADVANTAGE ADVANTAGE ADVANTAGE ADVANTAGE 
ADVANTAGE ADV,'uNrAGE ADVANTAGE ADVANTAGE ADVANTAGE ADVANTAGE ADVA ' ' , ~@ ~ ADVANTA~ E ~V~NTAGE ADVANTAGE "~ ~ ADVANTAGE ADVANTAGE 
DVA RXGE ADLXN (E ADVAN AG ADVANTAGE AD NTAGE AD ANTAGE ADVANTAGE ~ ~ !  § A VANTAGE ADVA~?AGE A VANTAGE l ' / ~ , x  ' , ~• A XANTAGE ADXANTAGE 

OF O~ OF O~ OE OE O~ O~ O~ O~ O~ O~ O~ O~ O~ 

MZSTAKE M STAKE MISTAKE MISTAKE MISTAKE -',41~:~3.1N~ ..... m . . . . . . . . . . . . . . . . . .  ~ T E E  MZSTA/(E NJSTAXE M I S T A K E  RrgTAKE I S T A K E  MISTAKE MISTAKE M 
M ISTAKs Ml STAK~ MISTAKE MISTAKE MISTAKE MISTAKE MISTAKE MISTAKE MISTAKE MISTAKE NIISTar .fSTAKE JZ$ ~ "  ~ . . . . . . . . . . . . . . . . .  IISTAKE MISTAKE M STAKE MISTAKE MISTAKE M STAKE MISTAKE MISTAKE MISTAKE M STAKE MISTAKE M STAKE M STAKE M STAKE MISTAKE 
M I S T A K E  M I S T A K E  M I a T A ~  M I S T A K E  M STAKE M S ! ~  MI STAKE b M S " . . -& INTAKE MISTAKE MISTAKE .- ~ : ~  ", N I S T A K E  MISTAKE MISTAKE <{~" ~ ~ >  

M I S T A K E  . . . . .  ~ + . , .  N STAKE ~ :  :+ : ~  ~ " f4 [& MISTAKE ~ ' / 8  - • N N N STAKE MISTAKE ~4 # "  ~g" 

Fig. 16. Each word of the sentence TAKE AD_u OF MISTAKE represents a self-reproducing unit. The information of the sentence 
is stabilized by hypercyclic coupling among the words. In the graph, each printed word is representative of 10 copies in the computer store. 
All words in a vertical row refer to the same time, the intervals of which change discontinuously along the horizontal axis. The 
oscillation builds up from an initial equipartition of words and maintains a phase shift from word to word. The error distribution for 
each of the four words is stable and of the same kind as shown in Table 5 
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Later on we' shall extend our analysis also to some 
nonautonomous systems for which A i = Ai( t  ). 

As before, the x~ represent population variables that 
usually will refer to self-replicating macromolecular 
assemblies. The constants ki(i=1, 2, ..., m) enter as 
parameters and may be composed of rate constants of 
elementary processes, of equilibrium constants for 
reversible and rapidly established reaction steps and of 
concentrations of those molecules that serve as the 
(energy-rich) building material for the synthesis of the 
macromolecules, assuming that these concentrations 
are buffered and hence can be included as time- 
independent values. Both the sets o fx  and k values can 
be represented as column vectors in a concentration 
space, or in a parameter space, respectively, 

x =  2 and k =  ka 

\ x , /  i ~  

Assume we can express ~ as a polynomial in the various 
concentrations x~ (which as an approximation may also 
apply to irrational expressions or ratios of poly- 
nomials), then it will usually be possible to find leading 
terms in F~, which dominate in certain ranges of 
concentration. These leading terms usually are simple 
monomials of a given power of x~. As such they 
determine the dynamic behavior of the system. 
The simple case 2 = k x  p is illustrated in Figure 17. The 
textbook solutions have been normalized to x(0)= 1 
and 2(0)= 1. As outlined in the Figure's legend, the 
whole family of solution curves can be subdivided into 
three classes, which are restricted to different regions of 
the concentration/time diagram. Let us consider three 
representative examples, which will be of particular 
interest in our forthcoming discussion (cf. Table 6). 

x(t) 

By B we denote the initial conditions for a given set of 
solution curves, which in our case are represented by 7 
the set of initial concentrations x 0. 
According to the procedure employed in part A we split 
the functions A i into three terms: 6 

Ai = Ai - A i - 4'i (31) 

The Ais comprise all positive contributions to the 
chemical rate, representing an 'amplification' of the xi 
variables, while the A~s include all negative rate terms 4 
resembling 'decomposition'  of the macromolecular 
species, qS~ finally refers to a flux which may effect either 

3 
dilution or buffering of the component i, depending on 
the external constraints applied to the system. The 
difference A ~ - A ~  may be called a net growth function 2 
F~. Referring to the Darwinian system (cf. part A), F~, in 
particular, is given by W , x  i + ~ WikXk, and if summed 

k:4=i l 
over all species k = Lto n, it resembles the excess growth 

function E = ~ EkX k. 
k=l 

VI.2. Unl imi ted  Growth  

Removal of selection constraints leads to a new system 
of differential equations 

Xi =/~/(X, k, B) (32) 

describing a situation which in the following is called 
'unlimited growth'. This terminology is representative 
for the system as a whole; for individual members it 
may also include decay or stationary behavior. 

1 2 3 
t = t  c t i m e  

Fig. 17. Different categories of growth can be related to single-term 
growth functions F(x)= dx/dt  (normalized to F =  1 and x = 1 for 
t = 0). Region A does not include any growth function which could be 
represented by a simple monomial F = x  p. In this region all popu- 
lation numbers x(t) remain finite at infinite time. The borderline 
between region A and B is given by the growth function F ( x ) = e  1 -x  
(curve 4). Region B is spanned by all monomials F ( x ) = x  p with 
- ~ < p <  1. Curve 1 in this region exemplifies constant growth rate 
(p=0) equivalent to linear growth. Exponential growth (p= l )  
provides the borderline between regions B and C (curve 2). While 
population numbers in region B reach infinity only after infinite time, 
they show singularities at finite times in region C. As an example, 
hyperbolic growth (p = 2, singularity at t = tc = 1) is shown by curve 3 
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i) Solution curve 1 represents a system with constant 
(positive) growth rate. The population variable x(t) 
increases linearly with time. The solution curve also 
represents an example for the family of curves in 
region B of Figure 17, which grow to infinity at infinite 
time. An irreversible formation reaction with totally 
buffered concentrations of reactants may serve as the 
most common example. Self-reproducing species in 
ecologic niches, feeding on independent sources, may 
adjust their growth rates to the constant influx or 
production rate of food and then constitute another 
example for a growth behavior which is independent 
of the population size. 
ii) Solution curve 2 results from growth rates linear in 
the population variable and exhibits an exponential 
increase of x with t, typical of Darwinian behavior, as 
was shown in Part A. The curve 2 furthermore estab- 
lishes the borderline between regions B and C, i.e., 
between functions that reach infinity at infinite and at 
finite time. 
iii) Solution curve 3 finally represents an example for 
functions with a singularity at finite time It c = (kXo)- 1]. 
In this particular case, the growth rate was assumed to 
be proportional to the square of the population 
variable. 
The whole range C may be characterized as 'hyperbolic 
growth'. Of course, in any real and finite world a 
population can never grow to infinity, because the 
available resources are finite and hence constraints will 
always take care of growth limitations. The phenomena 
giving rise to the hypothetical existence of a singularity 
will still cause a behavior quite different from that 
encountered in Darwinian systems. 

At this point we may define the 'degree' p of the growth 
functions in a more general way, which will turn out to 
be useful for classification. As before, p~ is the power of 
the leading term in the growth function F~. An n- 
dimensional dynamic system then may be character- 
ized by a set of Pi values: (Pl P2 ... P,). When we have a 
uniform distribution of powers pi, 

Pi=P2 . . . . .  P , - P ,  (33) 

we shall call the system 'pure'.  Otherwise we are 
dealing with 'mixed'  systems, which may be classified 
by their distributions of p~ values. Obviously, 'pure '  
systems can be analyzed much more easily than 'mixed'  
systems. 

VI.3. Constrained Growth and Selection 

In reality we shall always encounter constraints which 
provide certain limits for growth. For  experimental 
studies, we must insure reproducible conditions. It is 

therefore necessary to formalize these conditions and 
include them in the theoretical treatment. 
In irreversible thermodynamics we would prefer selec- 
tion constraints that facilitate a thermodynamic de- 
scription, e.g., constant generalized forces or constant 
generalized fluxes. For  the analysis presented here, we 
have to adjust these to conditions for selection and 
evolution that can be materialized in nature. The 
constraints q5 i, as used in Equation (31), are too general 
for any straightforward analysis. In general we may 
distinguish between specific and nonspecific selection 
constraints. In the first case, the constraints act specifi- 
cally on a single species or on a few species whereas the 
second case refers to regulation of a global flux ~b. Then 
changes in all population variables are proportional to 
their actual values xi: 

qsi=xi qb (34) 
c 

In practice, nonspecific selection constraints can be 
introduced into a dynamic system by the application of 
a continuous dilution flux. Thereby the total con- 
centration, c = ~ xi, can be controlled. The correspond- 
ing differential equation for c: 

j = l  j = l  

fulfils the condition of stationarity: ~ = 0, when the flux 
is adjusted to compensate the net excess production: 

q5 = ~b o = ~ Fj(x) (36) 
j = l  

This selection constraint, referred to as 'constant 
organization', has been introduced previously and was 
also used in Part A. Condition (36) will be used 
frequently in the following sections to facilitate a 
general analysis of selection processes. Other con- 
straints have been investigated as well [53]. As will be 
seen in the next section, the important features o f  
selective and evolutive processes are fairly insensitive 
to the constraints applied. (These, of course, are always 
reflected in the quantitative results.) 
The condition of constant organization leads to the 
following differential equations for the dynamic 
system: 

Xi n 
2 i = F/(x)-~oo j~l  Fj(x)' i=  1, 2 . . . .  ,n (37) 

Here c o denotes the stationary value of the total 
concentration which may be maintained by regulation 
of the flux to the value ~b o. 
The individual selection behavior for the three simple 
growth functions: p=0 ,  1, and 2, as discussed in 
connection with Figure 17, is detailed in Table 6: 
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Table 6. Growth rates and selection behavior under  the selection constraints of  constant  overall organization in the dynamic system 
k = F--d)  

p Unlimited growth 

Growth rate Solution curve Type of growth 
r(~) 

Long-term behavior under constraints of constant  organization 

Type of selection behavior 

1 0 k x = x 0 + k t linear 2 i = kl c0/~, kj 
2 1 k x  x = x  o �9 exp(k t) exponential 2k = c0, )2 i = 0  

k k - k i > O ,  i=~k 

3 2 k x  2 x =x0(1 - - k x o t )  -1  hyperbolic 92k = c0, 2 i = 0  
k = l ,  2 , . . . , n ; i : # k  

Coexistence of species with no selection 
Competit ion leading to selection 
of the globally 'fittest '  species 
Competi t ion aiming at local optimization 
' once-for-ever' decision 

i) Constant growth rates-corresponding to a linear 
increase of the population with t i m e -  yield under the 
constraint of constant organization a stable coexistence 
of all partners present in the system. Upgrowth of 
advantageous mutants shifts the stationarity ratios 
without causing the total system to become unstable. 
ii) Linear growth rates, corresponding to an exponen- 
tial increase of the population size, result in com- 
petition and selection of the 'fittest'. Advantageous 
mutants, upon appearance, destabilize and replace an 
established population. 
iii) Nonlinear growth rates (p>l) ,  characterized by 
hyperbolic growth, also lead to selection, more sharply 
than in the Darwinian system mentioned under ii). 
Mutants with advantageous rate parameters, however, 
in general will not be able to grow up and destabilize an 
established population, since the selective value is a 
function of the population number (e.g., for p =2, 
W ~  x). The advantage of any established population 
with finite x hence is so large that it can hardly be 
challenged by any single mutant copy. Selection then 
represents a 'once-for-ever' decision. Coexistence of 
several species here requires a very special form of 
cooperative coupling. 

The examples mentioned are quite representative. We 
may classify systems according to their selection be- 
havior as coexistent or competitive. In a given system 
we may 6ncounter more than one type of behavior. 

VI.4. Internal Equilibration in Growing Systems 

While the condition of constant organization simplifies 
the analysis of dynamic system considerably, it is 
limited to systems with zero net growth. In this section 
we shall try to extend the range of applicability. The 
main problem is to find out in which way and under 
which conditions predictions on growing systems can 
be made, given the results obtained from an analysis of 
the corresponding stationary states. For this purpose 
we introduce nonspecific and time-dependent selection 
constraints (Eq. 34): 

x i 
= r , ( x ) -  (38) 

Either c(t) or r can be chosen freely. The other 
function, however, is determined then by the following 
differential or integral equation, respectively. 

dc 
4(0 = Fi(x ) - ~  or (39) 

i=1 

c(t)=co+ F/(x)- ~b(z) dr (40) 
i 

It is appropriate now to introduce normalized popu- 

lation variables ~ --1 x. The differential equations then 
c 

can be brought into the form: 

�9 1 

~i = c ~  {Fi(x)- ~iNf~(x)} (41) 

As we see immediately, ~i does not depend explicitly on 
the selection constraint 4)(t). There is, however, an 
implicit dependence through c(t). We therefore push 
our general analysis one step further by considering 
some obvious examples: Let us assume that the net 
growth functions F~(x) are homogeneous of degree 2 in 
x. Although this condition seems to be very restrictive 
we shall see that almost all our important model 
systems will correspond to it, at least under certain 
boundary conditions. Homogeneity in x leads to the 
same condition as the requirement of a defined degree 
p(2=p) in the unlimited growth system (see Sec. 1.5). 
Now, the transformation of variables is rather trivial: 

Fi(x) = Fi(c ~) = c~Fi(~) (42) 

and we obtain for the rate equation: 

)  43, 
Two important conclusions can be drawn from a 
simple inspection of this equation: If 2 =p  = 1, i.e., for a 
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Darwinian system as discussed in Part A, the de- 
pendence on c vanishes and not only the long-term 
behavior but also the solution curves are identical in 
growing and stationary systems as far as relative 
population variables (~ are concerned. 
If  2 = p :t= 1, the long term behavior of ( will be identical 
with that for the stationary system at constant organi- 
zation, provided c(t) becomes neither zero/nor infinite. 
Thus for all realistic systems with homogeneous net 
growth functions F~, the results of fixed-point analysis in 

space, as obtained in the next section, will be valid 
also for the case of growing populations. 
It is possible to generalize the latter result also to other 
classes of growth functions, as will be shown in the 
section on fixed-point analysis. Internal equilibration 
simplifies analysis of complex dynamic systems tre- 
mendously. In many cases the results become identical 
or similar to those for stationary conditions. If we ana- 
lyze for the selective behavior of a system, these are the 
conditions which count. In the following section we 
shall inspect more closely various dynamic systems 
under these conditions. 

dimensional map provide us with a vague feeling for the 
three-dimensional scenery. It is this kind of problem 
that fixed-point analysis deals with. The landscape 
corresponds to a potential surface along which the 
dynamic system is moving. In most cases a complete 
knowledge of this potential surface is not required, and 
therefore a 'fixed-point m a p '  will turn out to be much 
simpler than a survey map we use to orient ourselves in 
an unknown region. In general, the 'fixed-point m a p '  
shows exclusively the positions of locally highest and 
lowest points, such as mountain peaks, passes, and 
valleys, which are called sources, saddles, and sinks. 
Such special points are the fixed points of the potential 
field. Often it is necessary to include also the ridges as 

VII. Fixed-Point Analysis 
of Self-Organizing Reaction Networks 

VII.1. The Appropriate Method of Analysis 

In analyzing various molecular processes of self- 
organization we are naturally more interested in the 
final outcome of selection than in a detailed resolution 
of the dynamic process. Accordingly, in this section we 
do not need all the information that is provided by the 
complete set of solution curves satisfying a system of 
differential equations. Fixed-point analysis, therefore, 
is our method of choice, because it serves best the 
purposes of a comparat ive analysis of selective be- 
havior. Only in some cases shall we also consult more 
sophisticated techniques, such as the inspection of the 
complete vector fields. 
Nowadays,  fixed-point analysis is a routine technique 
for studying the long-term behavior of dynamic sys- 
tems. It can be found in mathematical  textbooks or 
treatises (see, e.g., [48]). Fixed-point analysis has also 
been applied to problems of economics and to ecologic 
models as well as to chemical reactions far from 
equilibrium [49]. A summary  of the present stage of 
development was given recently in a progress report  
[50]. 

VII.2. Topologic Features 

Let us imagine a mountainous country for which we 
have a map (cf. Fig. 18). The contour lines in the two- 

b 
Fig. 18. a) A topographic map provides an abstract representation of 
a landscape. The lines drawn connect points of equal altitude. The 
picture shows a region in the Eastern Alps. (reprinted from 
,,Osterreichische Karte" 1:50000 Blatt Nr.177 (1962) by courtesy of 
Bundesamt f'tir Eich- und Vermessungswesen Abt. Landesaufnahme). 
b) The fixed-point map is a further abstraction of the topographic 
map. The drawing records the fixed points of a): O sources or peaks, 
Q saddle points, �9 sinks; the solid lines here mark the separatices 
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lines which separate one valley from another (Fig. 18). 
Characteristically, they are called 'separatrices'. A 
fixed-point map including separatrices is sufficient to 
predict where a trajectory starting from a given point 
on the map will lead. Trajectories are the lines of 
steepest descent, which in a landscape will be followed 
by flowing water. The gravitational potential field on 
the surface of the earth, on the other hand, is less 
complicated than the fields we encounter in self- 
organizing dynamic systems. Whereas water flowing on 
earth always approaches a sink, such as a lake, self-�9 
organizing dynamic systems may show a more complex 
behavior. For instance, there are situations called limit 
cycles w h e r e - i n  the language of our i l lustrat ion-  
water would never stop flowing at a certain point but 
rather would circulate forever along a closed line 
determined by the shape of the potential field. Even 
stranger situations have been described, to which 
mathematicians actually refer as 'strange attractors', 
representing something like nonperiodic orbits. Attrac- 
tor is a more general expression than sink. It includes 
not only sinks, but also stable closed and nonperiodic 
orbits. 
In a fixed-point map, the whole area under con- 
sideration can be separated into a number of regions 
usually called basins, belonging to individual attrac- 
tors. The boundaries of these regions are the separat- 
rices. Thus, from all points of a basin the water flows to 
the same attractor, which of course has to lie inside that 
region. 
Now let us be more precise and characterize the 
quantities and expressions that are necessary for fur- 
ther discussion in mathematical terms. Fixed points or 
invariant points of dynamic systems are defined as 
those points at which all concentrations or population 
variables, x~, are constant in time. Hence, the first time 
derivatives vanish 

2 i = 0, i = 1, 2 . . . . .  n (44) 

thereby determining the positions of all fixed points 
belonging to a given dynamic system. When all random 
fluctuations in population variables are strictly sup- 
pressed, integration of the dynamic system starting at a 
fixed point trivially leads to time-independent, constant 
populations. The response of the system to small 
changes in concentration at given fixed points provides 
an excellent tool for a classification of these points. It 
can be described by a set of normal modes with 
reciprocal time constants Ok, which are obtained as the 
eigenvalues of a system of linear differential equations 
representing the best fit of the nonlinear system around 
the point of reference (cf. VII.4). Accordingly we can 
distinguish four main classes of fixed points. 

CLASS CO 1 (O 2 

, . ~  "~0 <0 NODE ) 
"~0 <0 (.0 l=Oa 2 FOCUS 

C~l~ -o.+ib -a-ib a,b=-0 SPIRAL 

2 ~ >0 <0 SADDLE 

SINKS 

3 O ~0 ~0 SOURCE 

/. �9 ~'0 =0 

/. 0 =0 <0 

/, @ *ib -ib CENTER 

Fig. 19. Symbols are Used to classify various fixed points: Class 1: 
stable fixed points or sinks; Class 2: saddle points; Class 3: sources; 
Class 4: unstable fixed points including eigenvalues co with zero real 
parts. The examples refer to a two-dimensional dynamic system 

(1) Stablefixed points or sinks, i.e., locally lowest points. 
All eigenvalues co k have negative real parts and hence 
fluctuations along all possible directions in concen- 
tration space are compensated by an internal coun- 
teracting force. In chemistry, sinks correspond to 
chemical equilibria in closed and to stable stationary 
states in open thermodynamic systems. 

(2) Saddle points with at least one direction of in- 
stability. Here one (o k value at least will have a positive 
real part. Consequently, a small perturbation or fluc- 
tuation in this direction introduces a force that tends to 
increase the fluctuation. As a result the dynamic system 
will move away from the saddle. 

(3) A source representing a locally highest point. It 
differs from the saddle only by the fact that it is unstable 
with respect to all directions. All co k values have 
positive real parts. 

(4) Another class of f ixed points, which cannot be 
analyzed completely within the linear approach. Some 
of the frequencies (o k show zero real parts and the 
nonlinear contributions may change their nature: An 
example is provided by centers that are defined by 
purely imaginary eigenvalues, and whose trajectorial 
representations are manifolds of concentric orbits. We 
shall encounter such situations in this paper. 

After ' long enough' time - w h i c h  means a period much 
longer than the largest time constant of the dynamic 
sys tem-every  realistic dynamic system (i.e., a system 
without external suppression of fluctuations) will ap- 
proach an attractor. Thus the result of selection will 
always coincide with an attractor in concentration 
space. 
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The final result of a selection process corresponds either 
to a stable stationary state or to a continuously and 
periodically changing family of  states. In some very rare 
situations nonperiodic changes within a defined set of 
states may occur as well. For all these stable or quasi- 
stable final situations a common, general expression is 
used in differential topology: the 'attractor' of the 
dynamic system, which includes the stable point, the 
closed orbit, and the aperiodic line. Within a given basin, 
the result of a selection process is approach to an 
attractor, which is independent of the particular initial 
conditions. 

VlI.3. An Appropriate Space: 
the Concentration Simplex 

The concentration variables or populat ion numbers 
span the n-dimensional open space IR": {x~, x2, . . . ,  x, ;  
- o o < x ~ < o %  i = 1 , 2  . . . . .  n}, only part  of which is 
physically meaningful: 

]~"c lR" ; ]K" :  {x~,Xz , . . . , x , ;  x~>O,i=l ,  2 , . . . ,n}  (45) 

( I  

(o, cc, o} ~(o,l,o) 

C O - 

CO 
2 

b 

O-  

(Co&O} -" (~,o,o } 
1 

/ 
x2 "Y" \ \ ~ o . s  xl 

/ v V  / / / / /-7'-A o., 

_ _  x3 ~. (O,O, Co) a (0,0,1) 

X3 

3 = ( O,O,C o) ~ (0,0,1) 

(0,0,0) 
2 = (O, Co, O) ~- (0,1,0) 

2 

All concentration variables can be summed to give a 
non-negative and finite total concentration c: 

c =  ~, x i, 0 < c < o o  
i = l  

which is used for normalization: 

& X i 
~ = - - ;  0 < ~ < 1; 2. ~ = 1 (46) 

c i=1 

According to the properties of the variables iN" can be 
mapped now isomorphically onto a unit simplex (S,) 
for any given value of c -- c 0. (The corresponding space 
will be denoted by g"): 

C=Co" ~ "  ~ g " :  {~i, 42 . . . . .  4.} (47) 

A unit simplex Sn is a regular polyhedron with n corners 
in the corresponding ( n -  1)-dimensional subspace de- 

fined by ~. ~i = 1. The edges of a simplex are of unit 
i = l  

length and represent coordinate axes for the variables 
~i. As an illustrative example $3 is shown in Figure 20. 
Diagrams on S 3 are familiar to chemists from the 
representations of ternary systems. 
As a consequence of Equation (46) the dynamic system 
on the unit simplex has lost one degree of freedom 
compared to ]N". In other words: Due to normali- 
zation, the variables ~i always refer to a fixed value of 
c = c o and thereby one linear dependence is introduced 
among the variables. 

1 = (Co,O,O) "-- (1,0,0) 
• 
Fig. 20. Diagram a) illustrates the simplex S 3 while diagram b) shows 
how it is embedded in the physically accessible concentration space. 
For  some of the points the total concentrations co=~,X~,  or the 

coordinates xl ,  x2, x 3 and 41, 42, 43 are given in parenthesis 

Finally, we would like to stress a difference between 
maps on N "  and ~" which becomes apparent  when we 
compare results obtained for different values of c o . Due 
to normalization, the size of the simplex S, is fixed, 
whereas the physically accessible region of Ys varies 
with c o . The positions and the normal  modes of fixed 
points, in general, will depend on c o too. For  a complete 
description of the long-term behavior of dynamic 
systems, it is necessary to evaluate fixed-point maps 
which themselves are ' functions '  of the total con- 
centration c o . Many fixed points, as we shall see later, 
show a simple concentration dependence: Their coor- 
dinates are proport ional  to c o . Upon  changes of the 
total concentration c o , these points move along lines 
passing through the origin of ~ "  (see Fig. 21) and 
consequently are mapped as single points on S,. 
Accordingly the fixed-point map as a whole becomes 
much simpler. This formal dependence of fixed-point 
maps on the values of total concentration c o will be of 
particular importance in the analysis of growing 
systems. 
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1 

' C 

2 

• 

Fig. 21. Illustration of some points with positions exhibiting charac- 
teristic dependence on total concentration c o in concentration space 
~3  (a) and on the simplex S 3 (b). A=(c0/3, Co/3, Co/3), B=(0, 0, Co), 
C=(1, c0 -1  , 0) and D = ( c o - 1  , c0-1  , 2-c0). The arrows in 
a) indicate where the points migrate with increasing total concen- 
tration (note that those points for which all coordinates are propor- 
tional to c o like A and B are mapped into single points on Sa) 

A highly symmetric part of a particular ( n - 1 ) -  

dimensional hyperplane embedded in n-dimensional con- 
centration space is called the unit simplex. An illustration 
of a simplex, which can be described in three-dimensional 
space and therefore is easy to visualize, is given in Figure 
20. The unit simplex includes the total physically mean- 
ingful range of concentrations and is best suited for a 
diagrammatic representation of selective processes. 

VII.4. Normal Mode Analysis 

Sta r t ing  f r o m  the  gene ra l  sys tem of  n o n l i n e a r  differen-  

t ia l  e q u a t i o n s  we first d e t e r m i n e  the  f ixed po in t s  

a c c o r d i n g  to  2~ = 0. F o r  a s t r a i g h t f o r w a r d  analys is  o f  a 

d y n a m i c  sys tem,  it is i m p o r t a n t  to  k n o w  all the  f ixed 

p o i n t s  in the  r e g i o n  u n d e r  i nves t iga t ion .  In  genera l ,  
h o w e v e r ,  this  i n f o r m a t i o n  wil l  n o t  be  sufficient.  T ra jec -  

to r ies  o f  t he  n - d i m e n s i o n a l  d y n a m i c  sys tem wil l  of ten  

end  in sinks. H o w e v e r ,  t he re  m a y  be  s tab le  c losed  o rb i t s  
o r  s t r ange  a t t rac to rs ,  the  ex i s t ence  o f  w h i c h  can  be  

guessed  by  a careful  i n s p e c t i o n  o f  the  n a t u r e  of  t he  f ixed 

p o i n t s  in t he  s u r r o u n d i n g  r e g i o n  a n d  an  analys is  o f  the  

v e c t o r  fields. F o r  ins tance ,  s t ab le  l imi t  cycles  in two  

d i m e n s i o n s  can  be  iden t i f i ed  by  P o i n c a r 6  maps .  In for -  

m a t i o n  on  the  n a t u r e  o f  t he  f ixed p o i n t s  can  be  o b t a i n e d  
by  n o r m a l  m o d e  analysis .  

while the coefficients A~j are the elements of an n x n Jacobian matrix 
(A) defined at the fixed point R: 

A -- (aA'i (50 

Since A~(~) = 0 by definition of the fixed point, the linearized system of 
differential equations is given by 

i = A . z  (51) 

The reciprocal time constants referring to the normal modes are 
obtained now as eigenvalues of the matrix A. The eigenvectors ~ 
determine the corresponding linear combinations of concentration 
variables. 

A-(j  =cof ~j (52) 

The co j, in general, are complex quantities and determine the nature 
of the fixed points, the most important ones of which have been 
summarized already in Figure 19. 
Provided the matrix A is not singular, a stable fixed point of the 
linearized system (51) corresponds to a stable fixed point of the 
nonlinear problem in almost all cases [-51]. There are, however, some 
important exceptions (Re c0j = 0): A center in the linear system may 
appear as a spiral sink in the nonlinear case and vice versa. The 
famous Lotka-Volterra model system represents one example for this 
kind of behavior [52]. We shall encounter another one, the hyper- 
cycle of dimension n =4, in Section VIII.1. 
If more than one stable fixed point, limit cycle, or other attractor is 
obtained for a given dynamic system, we would also like to know the 
basins for which the attractors represent the infinite time limits of the 
trajectories. Individual basins are separated by separatrices, which 
can be determined in principle by backward integration ( t ~ - t )  
starting from saddle points and following the lines of steepest descent. 
If all stable fixed points and other attractors for a given dynamic 
system as well as their basins are known, we can predict the result of a 
selection process starting from any point in the given concentration 
space. 
In some cases we shall obtain Re coj = 0. Linearization around the 
fixed point then does not provide enough information, and one has to 
go back to the nonlinear dynamic system for a complete characteri- 
zation. Often, direct inspection of the vector field around the fixed 
point is not too ihvolved and yields the desired results. 

Determination of normal modes is an intrinsic part of 
fixed-point analysis. It  represents an inspection of the 
trajectories of the dynamic system in the close vicinity of 
the fixed point. In most cases it is Sufficient to character- 
ize the stability properties of the fixed point. The linear 
approximations involved, however, may not always 
suffice to provide enough information, requiring more 
sophisticated methods of analysis. 

VII.5. Growing Systems 

For this purpose the dynamic system is linearized in the neigh- 
borhood of a given fixed point ~: 

2~ = Ar + ~ Aijz j + O(Izl z) (48) 
j -1  

The new variables z~ are defined by 

z~=xi-~ i or z = x - R  (49) 

F r o m  E q u a t i o n  (37) it is easy to  d e d u c e  a d i f ferent ia l  
e q u a t i o n  for the  t o t a l  c o n c e n t r a t i o n  c: 

n 

.~lr~(x) 1 -  c (53) 

c o r ep re sen t s  the  s t a t i o n a r y  v a l u e  o f  the  t o t a l ' c o n -  

c e n t r a t i o n  which  is c o n t r o l l e d  by  the  unspec i f ic  f lux q50. 
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Apparently, this equation has a fixed point at c = c 0. 
The eigenvalue of the normal mode 

1 ( ~ F j ( ) )  
% = - - -  x ( 5 4 )  

CO \ j =  1 c = c  o 

is negative as long as the sum of all net growth terms 
is positive. Thus we find a stable stationary state at 
C ~ C  0 , 

In certain systems the fixed-point maps referring to 
internal organization also depend on the values of the 
total concentrations Co. Now, we are i n  a position to 
attribute some physical meaning to the former purely 
mathematical treatment. For  this purpose we assume a 
nonstdtionary dynamic system, which starts to evolve 
at t=to with a corresponding initial value of total 
concentration, C(to)= Co. Selection constraints will be 
adjusted in such a way that the total concentration c(t) 
changes slowly in comparison to the internal processes 
& t h e  dynamic system, i.e., all changes due to external 
processes are much slower than changes due to internal 
organization. The system approaches a stable solution 
( i .e . ,  a s i n k ,  a stable closed orbit or another kind of 
attractor) at every instant. When the preceding con- 
ditions are fulfilled the system comes closely enough to 
the long-term solution and the time-dependent process 
can be described as a sequence of stationary solutions 
with continuously changing total concentration. In 
more physical terms we may say, the dynamic system 
develops under established internal equilibrium. As 
expected, the analysis of a system can be simplified 
enormously if the condition of internal equilibration is 
fulfilled. 

Internal equi!ibration in dynamic systems with homogeneous growth 
functions F~ is easy to analyze, because in this case the fixed-point 
maps  S, do not  depend on the total concentrations c 0. F rom low to 
high values of c o no change  in the selective behavior will occur. 
Moreover, in growing homogeneous  system the long-term devel- 
opment  does not depend on the degree of internal equilibration. 
The ult imate result of a selection process, thus, will be the same in- 
systems of this type, independent of whether internal equilibrium has 
been established during the growth period or not. There are, however, 
situations to which the concept of internal equilibration mus t  not  be 
applied without careful analysis. At certain critical total con- 
centrations, c = Ccr, discontinuous changes may  occur in fixed-point 
maps, e.g., sinks may become unstable, stable limit cycles may 
disappear, etc. A well-known instability of this kind is represented by 
a 'Hopfbi furca t ion '  [58]. An internally equilibrated dynamic system 
which reaches such a point from one side, e.g., a growing system 
approaching the critical concentration from lower values, is essen- 
tially off equilibrium after it passes the critical point. For the analysis 
of dynamic systems in the surroundings of such points, special care is 
needed. We shall encounter  some such examples in Section VII. A 
very general study of similar situations has been pursued by R. Thorn 
[59] in his catastrophe theory. 
These complicated dynamic  systems, of course, are more  interesting 
from the biophysical point of view. In fact, the emergence of 
organized structures requires drastic changes like the discontinuities 
ment ioned above in the fixed-point maps. Inevitably, dynamic 

systems describing transitions between different levels of organi- 
zation have to pass through certain critical stages or periods. To be 
more concrete we shall consider one example representing an 
important  problem in self-organization of biologic macromolecules:  
the transition from independent competitors to a functional unit 
consisting of cooperating polynucleotides and proteins. According to 
the definition given in Section 1.4, only one species is selected in a 
competitive system and hence there is no stable attractor in the 
interior of S,. Any cooperative system, on the other hand, has to have 
such an attractor, otherwise at least one of the cooperating macromo- 
lecules would die out after long enough time. Consequently, a 
dynamic system, which in principle is able to simulate the desired 
development from a more random to a more organized state, must  
contain a critical instability at certain values of its parameters. 

VII.6. Analysis of Concrete Systems 

a) Independent Competitors 

As a lucid example for the application of the method of 
fixed-point analysis we consider the problem of selec- 
tion of a quasi-species, treated in Part A. The mathe- 
matical framework is compiled in Table 7. The coor- 
dinates o f  the concentration space are given by the 
normal variables Yk; the eigenvalues 2 k are the growth 
parameters of the functions F k. The analysis refers 
to a given distribution of mutants. Appearance of 
new mutants that provide any contribution to the 
selected quasi-species will change the meaning of the 
concentration coordinates Yk, i.e., their correlations 
with the true concentration variables x k. The results in 
Table 7 are self-explanatory. We shall use them in the 
following for a comparative discussion of the three 
growth functions F i = ]gin ~ which appear in Table 6, i.e.: 

1. Constant growth rate: p = 0 
2. Linear growth rate: p = 1 
3. Quadratic growth rate: p = 2  

1. The first case yields one stable fixed point, a focal sink inside the 
unit  simplex S,: 

4 =  co k 2 (55) 
n 

F, kj 
j = l  

n 

' Inside '  the unit simplex means  for all coordinates of 4 : 0  < ~ < c 0. 
The (negative) eigenvalue of the Jacobian matrix is n-fold degenerate 

o = - J = ~  (56) 
Co 

holding also for r which refers to the variation of the total 
concentration c. 
The result is stable coexistence of all species. 
2. The second case is treated in Table 7. As we recall there is only one 
stable fixed point. The fact that  it is situated at the corner of the 
simplex indicates competitive behavior. Only one of the con- 
centration coordinates of the nodal sink is positive ( =  Co), all others 
being zero. As in the first case, the map  does not  depend on the overall 
concentration co, nor is the final result dependent on initial 
conditions. 
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Table 7. Fixed-point analysis of the selection of a quasi-species (cf. part 

The rate equation reads: 

n 

.9~=2iyi - y l  ~, 2jyj; i=1,2 ..... n. 
Coj=1 

The long-term behavior is determined by n fixed points at the 
corners of the simplex S, 

L =  Yz . . . .  L = 
. ; 

\ C o l  

Normal mode analysis yields for every fixed point YCk a spectrum of 
no)} k) values. 

A) 

('Oj('l)='~J--~l ('Oj('2)=)/"J--/~2 1, n ... co}")=2F2" 
j = 2 , 3  . . . . .  n - l , n  j = 1 , 3  ..... n -  j=1,2,. . . ,n-2,  n -1  
. (i) - 2 1 % ( 2 ) - - - 2 z  eo~")=-2 .  uj c 

With respect to the degrees of freedom of the simplex S,, each fixed 
point Yk has n--  1 normal modes with the reciprocal time constants 
a)} ") describing the process of internal organization of the distribution 
resulting from competition among different quasi-species. Further- 
more the simplex S, has one normal mode ~o~ k) which corresponds to a 
variation of the total concentration e. All internal modes a)} k) are 
represented by differences of eigenvalues 2. Hence there is only one 
stable fixed point for the largest eigenvalue: s > 2j, j = 1, 2, . . . ,  n, 
j#m. It is a nodal sink, i.e., all co5") values are different and negative. 
Accordingly, the quasi-species with the smallest eigenvalue is 
described by a source, owing to its positive eoj values. The remaining 
n - 2  fixed points then are saddle points, because they involve positive 
as well as negative normal-mode rate constants co} k). 

3. The third case finally shows a total of 2 " -  1fixed points, which can 
be grouped in three classes. 
The first class includes n focal sinks, one at each of the corners of S, 

R= ~ c with O)}k)=--kkco j = l , 2  . . . . .  n- -1  (57) 
CO b(k) = _ kk C ~ 

These are the only stable fixed points. Being at the corners of the unit 
simplex they indicate again a competitive behavior, allowing for only 
one survivor, i.e., a pure state. In this case of nonlinear growth rates, 
however, the result of the competition depends on initial conditions, 
since there are n stable fixed points (in contrast to only one stable 
fixed point for linear autocatalysis). This means that each of the n 
competitors can decide the contest in its own favor, depending on 
initial population numbers. Once the winner is established, there is no 
easy way for any competitor to grow up and replace it. We therefore 

E1 E2 E 3 

(i,o,o) 
I 

2 3 
( 0,1,0 ) ( 0,0,1 ) 

a 

Fig. 22. Three-dimensional fixed-point maps for different types of 
independent competitors at constant organization. (The symbols E, 

@ ,  and @ have been introduced in Fig. 10). 

(9@@ 
(1,o,o) 

1 

2 -  
(O,l,O) 

a) Constant growth rate (p =0), 

&=k~ -x~ ~ kj 
Co 3=i 

k l = l ;  k 2 = 2 ;  k3=3. 

The map shows a focus inside the unit simplex S 3 which means stable 
and coexistent behavior of all three species. It is easy to visualize the 
whole manifold of trajectories approaching the stable focus along 
straight lines through every point in S,. 

@@| 
(1,o,o) 

1 

3 2 . . . . . . .  3 
(0,0,1) (0,1,0 } (0,0,1) 

b c 

b) Linear growth rate (p = 1), 

3 

2 i = k l x i  -x~i  ~ I,:jxj 
CO 3=1 

k 1 = 1; k 2 =2;  k 3 =3. 

A pure state consisting of species 3 represents the only stable long- 
time-range solution of the system. With the exception of the two 
edges 12 and 23 all trajectories start in point 1 and end in point 3. 
c) Quadratic growth rate @=2), 

2 Xi 2 i = k l x i - ~  2.,kjx~ k l = l ;  kz=2 ;  ka=3.  
c o  ] = 1  

The simplex S a is split into three regions, each being a basin for a 
stable fixed point. The size of the basin is correlated directly with the 
values of the corresponding rate constants. Since k a is largest the fixed 
point R 3 has the largest basin 
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call this situation 'once-for-ever selection'. As in the two preceding 
cases the fixed-point map does not depend on the total concentration 
C 0 �9 

The two other classes of fixed points include one source in the interior 
of the unit simplex (all coordinates being finite) and 2 " - n -  2 saddle 
points, one on each edge and one in each face (including all possible 
hyperfaces) of S,. Both classes of fixed points represent unstable 
behavior. We dispense with listing their coordinates and normal 
modes; they can be obtained by straightforward computations. 
Instead we illustrate the typical selection behavior of the different 
growth systems by showing some examples of unit simplices of 
dimension 3 (cf. Fig. 22). 

The three relatively simple model cases have been 
chosen to exemplify the method of fixed-point analysis 
and to stress those properties we have to watch out for. 
The nature of the fixed point, especially whether it 
provides stable or unstable solutions, is of utmost 
importance for problems of selection and evolution. Of 
no less significance is the position of the fixed points in 
the unit simplex. Cooperative selection of a set of 
replicative units requires the fixed point to lie in the 
interior of the unit simplex Sg referring to a subspace X k 
formed by the concentration coordinates of the k 
cooperating units. On the other hand, the position of 
a sink at one of the corners of S k is representative of 
competition, leading to selection of only one com- 
ponent, while positions at edges, faces, or hyperfaces 
indicate partial competition and selection. 
The build-up of a translation apparatus, for instance, 
requires the concomitant selection of several repli- 
cative units as precursors of different genes. None of the 
three systems discussed above fulfils the requirements 
for such a concomitant selection. The first system 
appears to be coexistent, but it is not selective and 
therefore cannot evolve to optimal function. The 
second system allows for coexistence only within 
narrow limits of the quasi-species distribution; it does 
not tolerate divergence of the genotypes, which is 

required to facilitate phenotypic diversification. The 
third system, finally, is strongly anticooperative, to 
such an extent that a species, once established, selects 
against any mutant, whether or not it provides a 
selective advantage. 
Following up the suggestions which emerged from the 
comparative review in Section V we shall now in- 
vestigate more closely ensembles with functional link- 
ages. They will have to include replicative units for 
the purpose of conservation of the genetic information, 
at the same time they will have to be stabilized 
cooperatively via couplings, which will cause the 
growth function to be inherently nonlinear. The pro- 
perties to be expected for the linked system hence will 
bear some relation to the third example of independent 
competitors. 

b) Catalytic Chains 

The most direct way of establishing a connection 
among all members of an ensemble is to build up a 
chain via reactive couplings, much as we link words 
into sentences in our language (Fig. 23). 

The rate terms referring to these couplings will cause the net growth 
functions F~ for all but the first member to be nonhomogeneous: 

x ~ [  " ] 
2 1 = k l x i  - k l x l  + ~ ( k j x j+k jx j x j_ l )  

C o L j ~ 2  

Co j= 2 

f o r  i = 2 , 3  . . . . .  n .  ( 58 )  

Due to the lack of homogeneity the fixed-point maps will be of a more 
complicated form than in the cases discussed thus far. 

To keep the procedure lucid we start with a three-dimensional system 
and extend our analysis later to higher dimensions. Table 8 contains a 
compilation of the pertinent relations of dimension three together 
with a brief characterization of the fixed-point map. According to this 

f ~ j ~ : )  3 ( 0,0,1 ) 

I / ~  ~ " J  ~ 2  (0,1,0) 

. f  . ~ , r  ~ C o = 0,25 

Fig. 23. Fixed-point maps of a catalytic chain of self-replicative units 

under the constraint of constant organization: 

Fl = k l  x l  ; 

Fi=klxi+k'ix~xi_ 1 (for i=2,  3) 

k ~ - 3 ;  k2=2;  k 3 = l ;  k~=2; k ; = l  

I=R1;  2 = ~  2... 6 = ~  6 

(1,o,o) o,o,o) (1,o,o) 
1 1 1 

0 I} 3 3*5*6 
' ' ,0,1} (0,0,1) 

L,+6, 4 

2 2 2+4  
( 03,0 ) ( 0,1,01 ( 0,1,0 ) 

C o = 2,5 Co= 4 Co_~ 

(b) (c) (d) 

At-low concentrations (a) the stable solution corresponds to selection 
of species 1. If the two other species, however, have not yet been 
extinguished when the total concentration reaches a critical value, a 
new stationary state emerges, at which all three species become stable 
(b). With a further increase of the total concentration (c), only species 
3 is favored so that the final situation (d) is equivalent to a selection of 
species 3. The underlying mechanism, however, differs from that for 
independent competitors 
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Table 8. Fixed-point analysis of catalytic chains of dimension three 

The fixed-point map shows six fixed points with the coordinates and normal modes as given below: 

o)~1~ = k 3 - k 1 

co~l)=k'2co - k~  + k z 

kl - k 2  \ 

I 

G Co 

co(24) = 1 { /~  k ;  c o - k ;  (k 1 - k2) - k~ (k~ - k3) } 
kl 

co~2)=k~ -/% 

CO (2) = k ;  C O - -  k 2 q- k 3 

x5 
k20k 3 

\ k; / 

09(5) = k l  - - k  2 

@~ = (k;  co - k2 + k3)(k  3 - k2) 
k'3c o 

(0) 
~3= 0 

,,Co/ 

03(23) k 2 - k  3 

/ k l  - k 2 \  

klk; 

0)(16) and ~0(26) are the eigenvalues 

of the Jacobian matrix A(x = x6)- 

The three fixed points 21, 22, and R3 coincide with the corners of the 
unit simplex S 3 (cf. Fig. 23) and hence signify competitive behavior 
- i rrespect ive of their nature. The positions of the three other fixed 
points depend (linearly) on the total concentration c o . The two fixed 
points 24 and R5 move along the edges 12 and 23 of the simplex, 
thereby showing partial competition. Solely the fixed point 26 may 
pass through the interior of S 3 yielding cooperative selection of all 
chain members. 

At low total concentration: 

Co<(k~-k2)/k'z, (kz-k3)/k'  a or (k~-k3)/k' 3 

the position of the fixed point R4, x s, or ~6, respectively, lies outside 
the simplex $3, which means outside a physically meaningful region 
of the concentration space. (At least one concentration coordinate is 
negative.) For e 0 ~ 0 the positions of these fixed points even approach 
infinity. The dynamic system becomes asymptotically identical with 
the system of exponentially growing (noncoupled) competitors, 
characterized by the fixed points ~1, R2, and ~:3. 
If k 1>k2, k 3 and e 0 is above a threshold given by the sum of 
[ ( k  1 - -k2)/k~2]  q-[(k 1 -  k 3 ) / k ~ ]  , the fixed point s indicating coopera- 
tive behavior, enters the unit simplex. However, it does not ap- 
proach any point in the interior of  $3, but rather migrates toward 
the corner 3. 

analysis, the three members (11 . to 13) of the linear chain of self- 
reproductive units can be selected concomitantly only under very 
special conditions, namely 

k 1 >k2, k 3 (59) 

and 

k l - k 2  k a - k 3  
c o > - -  4 (60) 

G G 
It seems very unlikely that partners which happen to fulfill condition 
(59) can maintain it over long phases of evolution (which means that 
mutations that change relation (59) must never occur). Even if they 
are able to do so, the system will then develop in a highly asymmetric 
manner, w h e r e b y - a t  least under selection cons t ra in t s -on ly  the 
population number of the last member in the chain increases with c o. 
Being aware that this soon means a divergence of population 
numbers by orders of magnitude, we may conclude that such a system 
will not be able to stabilize a joint function, since it cannot control the 
relative values of population numbers over a large range of total 
concentrations. 
This behavior is illustrated with some examples in Figure 23, 
presenting some snapshots of a continuous process in a system 
growing in a stage close to internal equilibrium. For concentrations 

c o below the critical value given by Equation (60), the three fixed 
points x4, xs, and x 6 lie outside the unit simplex (Fig. 23a). If c o 
equals the critical value, the fixed point ~6 reaches the boundary of 
the simplex (Fig. 23b) and, with increasing Co, migrates through its 
interior. At the same time it has changed its nature, now representing 
a stable fixed point (Fig. 23 c), which in this particular case is a spiral 
sink. (A more detailed presentation of fixed-point analysis with 
inhomogeneous growth functions will be the subject of a forthcoming 
paper [53]). Figure 23d indicates the final fate of this stable fixed 
point, namely, migration to the corner 3. The system thereby 
approaches the pure state 23 = %. 
The relevant results obtained for three dimensions can be generalized 
easily for the n-dimensional system. The role of species 3 is now taken 
by species n. Instead of six we find 2n fixed points. The most 
interesting fixed point is x2,. Its position can easily be determined: 

k l _ k  2 \ 

Co ~ k l _ k j  

(61) 
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If and only if the rate constants fulfil the relations k 1 > k j, j = 2, 3, ..., n 
and the total concentration exceeds the critical value: 

k l - k  j 
ccr= ~ (62) 

j = 2  kj  

the fixed point :~2. lies inside the simplex S,,. Then, x2. corresponds 
to a stable stationary state. All concentrations besides 2,~ are 
constant at this state and hence the system approaches the pure 
state ~n = Co at large total concentrations. 

We may summarize the behavior of catalytic chains: 
1) Stable sationary states exist only when the rate 
constants and the total concentration fulfil certain 
relations: 

n 
.kl>kj; j = 2 , 3 , . . . , n ;  Co> ~ kl-kJ 

j =~  k) 

The system must be subject to selection constraints in 
order to select against other nonfunctional units, and 
the required order of rate constants must not be 
changed by selection of favorable mutants. 
2) Provided the conditions given in (1) are fulfilled, the 
concentrations of individual species are of a compara- 
ble magnitude only in a rather small range of total 
concentrations. With increasing values of c o the last 
member of the chain, I, ,  grows under (quasi-)stationary 
conditions and finally will dominate exclusively. 
The catalytic chain therefore is not likely to be useful as 
an information-integrating system. 

c) Branched systems 

Wherever coupled systems evolve, branching of couplings as depicted 
in Figure 24 will be inevitable. Fixed-point analysis of such branched 

(1,0,0) 

2 - ' " 3  
(0,1,0) 10,0,I) 

Fig. 24. Fixed-point map of a dynamic system representing a 

in a catalytic network of setf-replicative units @ branching point 

under the constraints of constant organization 

Fl=klxl; Fi=k~xi+klx~x 1 (for i=2,  3) 

k1=3; k2=k3=0;  k ~ = l ;  k~=2; Co=3.5 

networks does not reveal any unexpected, new features. At very low 
total concentrations the three species behave like independent 
competitors. There are now two critical values of Co, at which either 
11 and 12 or 11 and 13 become coexistent. This finally depends on 
whether 12 or 13 is more efficiently favored by 11. One of the two fixed 
points turns out to be a stable node, the other a saddle point. At 
higher total concentration the stable fixed point again migrates 
toward one of the corners 2 or 3, respectively. An illustration of this 
behavior is given in Figure 24. 
The three-dimensional system investigated here can be generalized in 
two ways: 
1. More than two branches may start out from a given point. 
2. The individual branches may contain more than one member. The 
results of fixed-point analysis of these many-dimensional systems are 
essentially the same as those obtained in three dimensions and can be 
summarized as follows: 

Branched systems of self-replicative units are not stable 
over long time spans. The branch which is most efficient 
in growing will be selected while other branches will 
disappear. What remains finally is the most efficient 
linear chain and thereby the whole problem is reduced 
to a dynamic system of type (58), which we have 
discussed in the previous section. 

VII.7. Fixed-Point Analysis of Hypercycles 

a) Classification 

Ring closure in dynamic systems leads to entirely new 
properties of the system as a whole, as we have seen in 
Part A. The set of molecules which are formed in a 
closed loop of chemical reactions represents a catalyst. 
A cycle of catalysts (Fig. 4) in turn has autocatalytic 
properties and may be regarded as a self-replicative 
system. After finding that straightforward or branch- 
ing couplings among self-replicative units do not lead 
to a joint selection of the functionally linked system, 
we may ask whether any ring closure in the chain of 
couplings will bring about a change in the nature of 
the selective behavior of the total ensemble. We might 
argue that this must be the case, since we remember 
that in open chains the recipient of all the benefits of 
coupling was always the last member. 
Hypercycles have been generally classified in Part A. 
The simplest constituents of this class of networks are 
obtained by a straightforward functional link among 
self-replicative units as shown in Figure 25. 
This section on hypercycles will consist of three dif- 
ferent parts. First we present some definitions and 
useful criteria for classification of this new kind of 
catalytic system. Then the results of fixed-point analysis 
for the most important 'pure '  types of hypercycles are 
described. Finally, we shall study one example of a self- 
organizing system which represents a realistic catalytic 
hypercycle. 
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1 

Fig. 25. Catalytic hypercycles, a) degree p=2 ,  n=6,  b) degree p =3, n =6, and c) degree p = n = 6  

Primarily, hypercycles differ from ordinary catalytic cycles by 
nonlinear terms in the growth rates. In simple cases, the functions F~ 
will be products of concentrations as shown in Equation (63). The 
exponents pz~ according to 

n 

F/=k, IV[ x'~' (63) 

can be regarded as elements of a matrix P. The indices 2 and i denote 
which population variable (x~) has to be raised to the power Phi in the 
function F~. The dynamic system is then determined completely by the 
matrix of exponents P, by the vector of rate constants k =(k s ... k,), 
and by a set of initial conditions. At first we shall study the 'pure '  
cases only, which are characterized by homogeneous growth terms F~. 
The requirement of homogeneity leads to a first restriction for the 
exponents in the matrix P: 

~px~=p; i=1 ,2  . . . . .  n (64) 
4=2 

'p '  is now common for all n differential equations and represents the 
degree of the growth functions introduced in Section V. In addition to 
the restriction of homogeneity we shall allow individual con- 
centrations to appear only as first-order terms in F~. Some important 
cases with higher-order dependences will be discussed below. Ac- 
cordingly, the exponents Pz~ are restricted to just two possible values: 
p~ = {0, 1 }. 
Finally, we shall introduce cyclic symmetry into the net growth 
function: 

I~i = k i X i X j X k X I  . . .  X r 

j=i-l+n(~iO; l=i-3+n(6il+g)i2+~5~3);... 
p - i  

k=i-2+n(b~+~i2); r=i-p+n ~ ~ (65) 

The assumption of cyclic symmetry is not essential for the most 
important features of the solutions. It is a reasonable assumption, 
however, if no further information on structural differences in the 
kinetic equations for the individual members of the cyclic system is 
available. The matrix P is of general and simple form now. A concrete 
example, the matrix P with n = 6 and p = 3 is shown below:  10000 il I 1 0 0 0  

P ( n = 6 , p = 3 ) =  1 1 0 0 (66) 
1 1 1 0  

\000  
0 0 l i  

Hypercycles with cyclic symmetry and homogeneous growth func- 
tions F~ thus are completely determined by the values of n and p and 
the vector k. 

Schematic diagrams for three examples of hypercycles 
with n = 6 and p = 2, 3 and n are shown in Figure 25. 
Cases with p =  1 must be excluded from the general 
class of catalytic systems called hypercycles, since they 
fall into the family of systems with linear growth rates 

b) General Analysis 

A summary of fixed-point analysis of hypercyclic 
systems is given in Table 9. 
We discuss two cases which are most important  in the 
context of this paper. 
1. The simplest hypercycle possible with p = 2 
2. The hypercycle, which utilizes catalytic'links among 
all members, i.e., p~/= 1 for i=  1 . . . .  , n and 2 = 1, ..., n, 
and hence, p = n 
The first system we christen simply 'elementary hyper- 
cycle', the s e c o n d - i n  accordance with its most com- 
mon physical realization as a cooperatively behaving 
complex - '  compound hypercycle'. 

c) The Elementary Hypercycle 

Depending on the dimension of the dynamic system, we 
observe interesting changes in the nature of the fixed 
point in the center of the simplex. For  this purpose we 
inspect more closely the sets of eigenvalues obtained for 
different values of n, which are described appropriately 
as vectors, co = Re toe1+ i Im roe 2 in the complex Gau- 
ssian plane (Fig. 26). The fixed point in the center is a 
focus for n = 2, a spiral sink for n = 3, a center for n = 4. 
For  n > 5  we obtain saddle points with spiral com- 
ponents in some planes. These characteristic changes in 
the nature of a fixed point are reminiscent of a Hopf  
bifurcation despite the fact that our parameter  is a 
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Table 9. The fixed-point map of a hypercycle 

Subjecting the dynamic system (65) to the condition of constant 
organization we find: 

X .  n 

2z JC i = k i X i X  j . . .  X l - -  k r x r X  s . . .  x t 
0 r = l  

p 1 

j = i - l + n S i l  . . . .  , l = i - p + l + n  ~ 3i, 
#- -1  

p - -1  

s = r - l + n 3 ~ l  .. . .  , t = r - p + l + n  ~ &,u; p < n  (T.9,1) 
#- -1  

Fixed-point analysis can be carried out analytically for any value ofn 
if all the rate constants ~ are equal: 

k 1 = k2 . . . . .  k,, = k (T.9,2) 

The results obtained are: 
1) One fixed point, which we denote by xo, is always positioned in the 
center of the concentration simplex. 
2) n additional fixed points occur at the corners of the simplex So: 

a Variations in the individual rate constants on tile solutions will be 
discussed in Section VIII. 

3) In many cases there are also one-, two-, three-, or even higher- 
dimensional manifolds of fixed points, e.g., fixed-point edges, tri- 
angles, tetrahedra, and higher-dimensional simplices 1-54]. These 
manifolds always occur in the boundaries of the corresponding 
simplices S,, for example, fixed-point edges are found in the 
boundaries of S,, n > 4, fixed-point triangles in the boundaries of S., 
n > 6, and fixed-point tetrahedra on S,, n > 8. 
Normal-mode analysis around the central fixed point Y0, which is 
responsible for cooperative selection, yields: 

(i) ~o = .c~ ~ co}o)= 1 - 7  -(p-  1) p 
n ' 1- ,v .k 

2~i  j 

j = l , 2 , . . . , n - - 1 ;  ? = e  " 

For p = 2  there are n or n--1 distinct eigenvalues, while for p = n  
all eigenvalues are equal to co~ ~ The first case is the usual situation. 
n - 1  single and one double-degenerate eigenvalues co~~176 = 
_ k(co/n)p-t are obtained for p = 2 and even n, whereas for odd n all 
the eigenvalues are distinct. The negative value of co} ~ again indicates 
that the dynamic system on the simplex S, is stable against 
fluctuations in total concentration c. 

a + 
n=2 n=3 n=4 

n=5 n=6 n=7 

Fig. 26. Normal modes a~ for the central fixed point (Xo) in 
hypercycles of type (65) with p = 2 and dimension n. Reco and Im co 
stand for imaginary and real part of the frequency co, respectively 

discretely varying quantity, the dimension n of the 
dynamic system. As we shall show by a more general 
analysis in Section VIII the central fixed point is 
asymptotically stable for n = 2, 3, and 4. In the case of 
higher dimensions n > 5  we find a more complex 
attractor, namely, a stable closed orbit or limit cycle, 
which always remains inside the simplex and therefore 
never reaches the boundary. In the latter case, time 
averages of concentrations xi: 

t 

X,(t) = lo~ xi(z ) dz, X/=limt~ yi(t/) (67) 

rapidly approach Co/n (for equal k~ values), which is just 
the same value as in the case of stable fixed points. 
For the fixed point at any corner k (x k = co) orS, we find 
one positive and n -  1 zero coJ. k) values. In Section VIII 
we shall analyze the nonlinear contributions and 
identify these fixed points as saddle points. The cor- 
responding long-term solutions hence do not contrib- 
ute to the selection behavior. 
The fixed-point map for a hypercycle with p--2 and 
n--3 is shown in Figure 27 for a concrete example. 

0,o,o) 
1 

2 3 
(0,1,0) (0,0,1) 

Fig. 27. Fixed-point map of a dynamic system (65) consisting of self- 

replicative units @ forming a hypercycle under the constraint of 

constant orgamzatlon 

(Fi=kix~xj; j = i - - l + n 3 ~ i  ; n=3,  p=2 ,  k=(1,  1, 1)) 
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In general, the net growth functions for the individual self-replicative 
units which form the dynamic system of a hypercycle will contain not 
only catalytic terms but also first-order growth terms: 

I~i = k i x  i q- k ' i x i x  j (68) 

Subjecting a dynamic system with these growth functions to the 
constraints of constant'organization we obtain: 

X i 
2 i = k i x i + k ' i x i x j -  ~ , , (kkXk+k 'kxkxz)  (69) 

CO k 

j = i - - l + n c S i l  , l = k - - l + n C ~ k l  ; /=1,2,...,n 

From a mathematical point of view the catalytic chain (Fig. 23) differs 
from the hypercycle just by a single rate constant and results from the 
latter by putting k~ =0. We may therefore expect some similarities 
between the two types of dynamic systems. Consistent with the 
inhomogeneity of the growth functions, the fixed-point maps depend 
on the total concentration. At the low concentration limit both 
systems become identical with the system of exponentially growing, 
indepedent competitors (Fig. 22). At high concentrations, on the 
other hand, the two systems will differ. The dynamic system (69) 
asymptotically resembles that of the corresponding elementary 
hypercycle (p = 2). 
As a concrete example we consider again a system of dimension n = 3. 
There are seven fixed points: Three coincide with the corners of the 
simplex $3, three other fixed points lie on the edges, and the seventh 
is in the interior of S 3. 
Numerical results were calculated for a given set of parameters k and 
are shown in Figure 28. As for the catalytic chain in Figure 23 we 
present fixed-point maps for three different values of total con- 
centration Co, which represent low and high concentration limits (a 
and e) as well as the critical point 

(b, c o = C~r = k 3 (k~- '  + k~- ~) - k ,  k ~ - '  - k 2 k~- ~). 

Cons ide r ing  the deve lopmen t  of  the  dynamic  systems 
(58) and  (69) close to in terna l  equi l ibr ium,  we real ize a 
very i m p o r t a n t  difference be tween  the cyclic and  
noncycl ic  systems:  The  cyclic system leads to an 
a sympto t i c  high concen t ra t ion  l imi t  which is charac te r -  
ized by  cons tan t  re la t ive  concen t ra t ions  of  the in- 
d iv idua l  species, whereas  the open chain  app roaches  
the pure  s ta te  (x , - - co )  at high to ta l  concent ra t ion .  
S u m m i n g  up the whole  deve lopmen t  f rom low to high 
concen t ra t ion  l imits  we real ize tha t  a hypercycle ,  as 
descr ibed  by  the d y n a m i c  sys tem (69), is an a p p r o p r i a t e  
example  of  se l f -organizat ion.  S tar t ing  f rom compe-  
t i t ion  a m o n g  ind iv idua l  species the  growing  system 
app roaches  a final s ta te  with dynamica l l y  con t ro l l ed  
net  p r o d u c t i o n  of  all members .  This  in terna l  con t ro l  
leads to  a s table  s t a t iona ry  s tate  or  to a state with 
regu la r  osc i l la t ion  of  p o p u l a t i o n  var iables  abou t  a fixed 
point .  

0,o,o) 
1 

t0,~,0~2 
/ /  (0,0,1) ' ,  7 ~ ,  

\\ 
\ 
\\ 

\ 

\ ' ,  

0,o,o) 
1 

~,d'? (o,o,1) 

(1,o,o) 
1§ 

toj,OI to, o,~} 

c 

Fig. 28. Fixed-point map of a dynamic system (69) consisting of self- 
replicative units forming a catalytic hypercycle 

(F  i = k~x i + k ' ix lx j ,  j = i - 1 + no5 i 1 ; 

n=3, p=2, k=(1, 2, 3; 1, 2, 3); 
a) c0=0.5: b) co=2.5, c) limc0~oe; 
I = X 1 ,  2=X2,  3=X3,  4=X12 , 5=X23 , 6=X31 , and 7=~0) 

d) The  C o m p o u n d  Hypercyc le  

The  analysis  of  the  case p = n leads to a simple,  general  
resul t :  As in the o ther  example  t rea ted  before, there  is 
one fixed po in t  inside the simplex. The  whole  b o u n d a r y  
of  the simplex,  however ,  consists of  uns tab le  fixed 
points ,  f ixed-point  edges, f ixed-point  planes,  etc. Since 

the invar ian t  po in t  in the midd le  (~0) is a focus for all 
values of  n, all t ra jec tor ies  s tar t ing f rom the in t e r io r  of  
the simplex, which is the  whole  phys ica l ly  meaningful  
domain ,  will a p p r o a c h  this pa r t i cu l a r  po in t  after long 
enough time. All  the eigenvalues ~o} ~ assoc ia ted  with ~0 
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(o,l,o) (o,o,1) 

Fig. 29. Fixed-point map of a dynamic system (65) consisting of self- 

replicative units @ forming a compound hypercycle under the 

constraint of constant organization 

( l ~ i = k i X l X 2  . . .  Xn; n=3,  p=3 ,  k=(1,  1, 1)) 

ute to the rate of formation of each constituent. A 
mechanism leading to such a compound hypercycle 
then would need either a -h ighly  improbable- 
multimolecular encounter or an intermediate for- 
mation of a complex of n different subunits, which is 
highly disfavored at low concentrations. Prebiotic 
conditions, on the other hand, are characterized by 
exceedingly low concentrations of individual macromo- 
lecules. For an efficient start of evolution via compound 
hypercycles one would have to assume extremely high 
association constants far outside the range of experi- 
mental experience and an inherent linkage between 
these constants and the functional efficiency of the 
single constituents. The compound hypercycle is thus 
likely to be of less importance for the nucleation of a 
translation system than any hypercycle of lower degree 
p. In more advanced phases of precellular evolution 
compound hypercycles might have had a chance to 
form. 

are the same for given values of k, Co, and n. They follow 
from the expression (3) given in Table 9 if we set p = n. 
The fixed-point map for a compound hypercycle with 
n=3 is shown in Figure 29. The complexes, thus, 
represent excellent examples for the control of relative 
concentrations of their constituents. 

e) Comparison of Various Hypercycles 

Hypercycles have an intrinsic capability for integrating 
information. Indeed the simplest members of this class 
represent the least complicated dynamic structures that 
are able to prevent an ensemble of functionally linked 
self-replicative units from destroying information by 
elimination of some of their members as a result of 
selective competition. From the dynamic point of view, 
all kinds of hypercycles are equivalent with respect to 
this property. On the other hand, less sophisticated 
systems, such as simple catalytic cycles (Fig. 4), are not 
eligible as information-integrating systems since they 
lack the property of inherent self-reproducibility (cf. [4], 
p. 501 ff.). 
A further discrimination within the hierarchy of hyper- 
cycles can be made according to their realizabi!ity in 
nature, which will be the subject of Part C. To present 
one example of such an argument, we compare here the 
simple type of hypercycle (p = 2) and the complex (p = n) 
with respect to their physical materialization. Simple 
hypercycles require bimolecular encounters of macro- 
molecules according to their growth law. These bimole- 
cular terms can easily be provided by various me- 
chanisms and also result from realistic assumptions 
about nucleic acid replication or messenger-instructed 
protein synthesis (see also Section IX and Part C). A 
compound hypercycle requires all partners to contrib- 

Various systems consisting of catalytically active and 
self-reproductive units have been studied by fixed-point 
analysis. The results provide clear evidence for the 
necessity of hypercyclic coupling. Only catalytic hyper- 
cycles can fulfill the criteria for integration of infor- 
mation listed in Section IV.5. 
1. Selective stability of each component due to favorable 
competition with error copies 
2. Cooperative behavior of the components integrated 
into the new functional unit 
3. Favorable competition of the functional unit with 
other less efficient systems 

VIII. Dynamics of the Elementary Hypercycle 

Hypercycles, being the relevant systems of prebiotic 
self-organization, deserve a more detailed analysis of 
their dynamic behavior. A complete qualitative de- 
scription can be given for the class of elementary 
hypercycles (p---2) up to dimension n =4. For higher 
dimensions, as well as for hypercycles of a more 
complex structure, we have to aid the topologic analy- 
sis by numerical integration. We exemplify the methods 
with the class of elementary hypercycles, which reveal 
all the basic properties of hypercyclic self- 
organization. 1 

Vlli.1. Qualitative Analysis 

Since we are concerned with dynamic systems of cooperating 
constituents, the stable attractors in the interior of the physically 
accessible range of concentrations are of primary interest. More 

1 For a particular case of a hypercycle, in which the second-order 
term x k x  k _  1 of the growth function has been substituted by a term of 
the f o r m x  k lnx  k 1, an analytical solution could be provided [21]. 
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specifically, we have to study the stability of those fixed points, for 
which some eigenvalues of the Jacobian matrix have zero real parts. 
In Section VII (Table 9) we encountered essentially two cases: 
1. Zero eigenvalues (c0} ~ = 0, j = 2, 3 . . . .  , n and i = 1, 2, . . . ,  n) for fixed 
points ~ at the corners of the simplices S, 

- 4 0 )  2. Purely imaginary eigenvalues/cu2.4 = -+ i) for the central fixed point 
of the four-membered hypercycle on S~ 2. 
Before presenting a general proof for the stability of the central fixed 
points in hypercycles of low dimensions n~4,  let us inspect the 
topology of these systems in more detail. 
The dynamic systems corresponding to elementary hypercycles can 
be decomposed into several subsystems each of which is defined on a 
globally invariant subspace. A set of points or a subspace will be 
called 'globally invariant' with respect to a given dynamic system if 
and only if a trajectory that passes through any point of the subspace 
never leaves the subspace. 
In particular we find that the dynamic systems on the simplices S, 
can be subdivided into those on boundaries (BS,~) and those in the 
interiors (IS,). The interior of a simplex, defined as before, is the 
region where no population variable vanishes: 0 < ~i < 1, i = 1, 2, . . . ,  n. 
Clearly, the dynamic systems on I S ,  are most interesting since they 
describe the development of intact hypercycles. We denote them in 
the following by numbers: 2, 3, 4,... N. 
On the boundary, one, two, or more population variables vanish. 
Consequently, the dynamic systems on B S ,  can be subdivided into 
dynamic systems on simplices of lower dimension like edges, faces, 
and hyperfaces. To distinguish these systems from complete hyper- 
cycles we shall use 2A, 2B, 3A, etc. as short-hand notations. All 
dynamic systems corresponding to elementary cycles of dimension 
n N 4 are shown schematically in Figure 30. As a concrete example, 
the decomposition of the four-dimensional system into 11 subsystems 
is presented in Table 10. 

Table 10. Globally invariant dynamic subsystems of the elementary 
hypercycle with dimension n = 4  

Symbol Condition Dynamic system 

4 ~1, ~2, G,  ~4 > 0 

3A 44=0 

2A 

2B 

r =0, r  or ~ = 0  

G = G = 0  

~2=~3 =0, ~1=~2=0 
or ~4=~1=0 

~ 2 = G = 0  
~ I = G = 0  

~i= r162162162  i=  1,2,3,4 
j = i -  l +ncSia and 
r 

j = i - 1  and 
~=GG+GG 
analogously 

analogously 

~i=0, i=  1,2,3,4 

All the dynamic systems up to dimension n = 4  can be analyzed by 
Lyapunov's method (Table 11). For the three systems 2, 3, and 4, 
Lyapunov functions are given, and hence, the central fixed point 
represents a stable attractor. Moreover, the basin of this fixed point 
extends over the whole interior of the simplices. In more physical 

2 Purely imaginary eigenvalues will occur also in elementary 
hypercycles of dimension 4k, where k is an integer >2. In these 
higher-dimensional examples, however, the central fixed point is a 
saddle point independently of the nature of higher-order contri- 
butions to the purely imaginary eigenvalues. 

2 2A 2B 

3 3A 

Fig. 30. Dynamic systems corresponding to elementary hypercycles 
of dimensions n = 2, 3, and 4. The individual systems are mapped on 
the simplices S n and can be decomposed into globally invariant 
dynamic subsystems (Table 10): The 'complete '  subsystem 2, 3, and 4 
are characterized by nonzero values of all population variables and 
thus describe the development in the interiors of the simplices S , ( IS , :  
0 > x i > co, i = 1, 2, . . . ,  n). On the boundaries of the simplices S , (BS , )  
one or more population variables vanish and dynamic subsystems of 
lower dimension like the 'flowing edge' 2A, the 'fixed-point edge' 2B, 
and the triangle of type 3A are obtained (note that the dynamic 
system 2A occurs in the boundaries surrounding 3, 3A, and 4, 2B in 
those surrounding 3A and 4, and 3A finally occurs in the boundary 
around 4) 

terms this means: Starting from any distribution of population 
variables we end up with the same stable set of stationary con- 
centrations. The dynamic systems indeed are characterized by 
cooperative behavior of the constituents. This result is of particular 
importance for the four-dimensional system where the linear approx- 
imation, used in fixed-point analysis, yielded a center surrounded by 
a manifold of concentric closed orbits in the x, y-plane (see Fig. 3 l a), 
which does not allow definite conclusions about stability. 
The dynamic systems on the boundaries of the simplices (BSn) 
determine the behavior of 'broken'  hypercycles, i.e., catalytic hyper- 
cycles which are lacking at least one of their members. In reality, these 
systems describe the kinetics of hypercycle extinction. They are also 
of some importance in phases of hypercycle formation. On the 
boundaries of the complete dynamic systems up to dimension 4 we 
find two kinds of edges 2A and 2B as well as the face 3A (Fig. 30). All 
three dynamic systems can be analyzed in a straightforward way. 
The first kind of edge 2A connects two consecutive pure states or 
corners, which we denote by 'i' and 'j '  ( j = i +  1 - n g l ,  ). As shown in 

'Figure 32 there is a steady driving force along the edge, always 
!pointing in the direction i - @  The only trajectory of this system thus 
leads from corner i to cornerj. Accordingly, we shall call system 2A a 
flowing edge. In approaching corner j, the driving force decreases 
parabolicatly (Fig. 32). Hence, the linear term of the Taylor expansion 
vanishes at the fLxed point R j, and fixed-point analysis cannot yield 
the desired prediction as to the nature of this fixed point. 
In elementary hypercycles the corners of the simplices are saddle 
points: A corner (i) is stable with respect to fluctuations along the 
edge kd ( 6 x  h > O, h ~ i - 1 + n 611 ) but unstable along the edge ij (/" = i + 1 
- n  ~i,)- On the boundary of every complete dynamic system we thus 
find a closed loop, 12 23 34 . . .n l ,  along which the system has a 
defined sense of rotation. This cycle is not a single trajectory. A 
particular kind of fluctuation is required at every corner to allow the 
system to proceed to the next pure state. The existence of this loop is 
equivalent to the cyclic symmetry of the total system. The asymmetry 
at each single corner reflects the irreversibility of biopolymer 
synthesis and degradation, assumed in our model. 
The physically accessible range of variables in the dynamic system 3A 
is circumscribed by two consecutive flowing edges, ij andj~  (j = i + 1 
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Table 11. Lyapunov functions [57] for basic hypercycles of dimension n=2,  3, and 4 

To prove the stability of a certain fixed point 2 of a dynamic system 
i=A(x) ,  we must find an arbitrary function V(x) which fulfils the 
following two criteria: 

(1) V(~)=0 and V(x)>0, x e U ,  (T.11.1) 

i.e., the function vanishes at the fixed point and is positive in its 
neighborhood U. Thus V(x) has a local minimum at the fixed point. 

dV 'Z I - - / -  s /~V~dx '<0  
(2) V(x)- - - -~-=j~  1 \Oxj/ dt , x~U (Y.ll.2) 

I 

i.e., the time derivative of V(x) is negative in the neighborhood of 
the fixed point. For trivial reasons V vanishes at ~: 12(i)=0. If it is 
possible to find such a function V(x) for a given fixed point of a 
dynamic system, it is called a (strict) Lyapunov function and the 
point "~ is (asymptotically) stable: All trajectories passing through a 
point in the neighborhood of ~ will end in the fixed point ~. 
A Lyapunov function V(x) may also be defined in a less strict way so 
as to fulfil the weaker criterion: 

12(x) < 0 (T. 11.3) 

Any trajectory entering the neighborhood U of R will remain there. 
To give a concrete example; sinks are asymptotically stable in the 
stronger sense of Lyapunov, whereas centers are stable only with 
respect to the weaker criterion (T.11.3). 
For  the sake of convenience we use normalized variables i t  and 
assume the rate constants to be equal to 1, k~ = k 2 . . . . .  k~ = 1, when 
we apply Lyapunov's method to basic hypercycles. 
The function 

1 "  
V= (-ln)-~142.-.  ~. (T.a 1.4) 

1 
has a minimum and vanishesat  the fixed point i~ = -  and thus meets 

n 
condition (T.11.1). The time derivative of V can be obtained by 
straightforward differentiation 

12= - i 1 4 z  ... 4 , (1 -n r ) ;  
n 

r= ~ ikil; l=k--l+n6kl  (T.11.5) 
k - I  

Now we have t o  check criterion (T.11.2) for systems with different 
values of n. In the interior of the simplex S, the condition I2<0 
becomes equivalent to the inequality 

1 
r ( r  (T.11.6) 

n 

1 
Clearly, we find r(~o)=- ,  which satisfies the equation 12(~0)=0, (~o 

n 

represents the central fixed point of the hypercycle.) 
For the two-dimensional system (n=2), condition (T.11.6) can be 
easily verified: 

r  4 2 = 1 - ~ r = 2 { ( 1 - - ~ ) = < � 8 9  (T.11.7) 

The function r represents a parabola with the maximum at 4 = �89 Thus 
r(4) <1 is fulfilled everywhere except at the fixed point 4 =�89 where 
r=�89 In this case V is a strict Lyapunov function and ~0 is 
asymptotically stable. 
For  n = 3 the situation is very similar. The inequality (T. 11.3), r < ~ is 
valid at every point in the interior of the simplex $3, except at the 
fixed point ~0 where r=�89 V again represents a strict Lyapunov 
function and the central fixed point ~o is asymptotically stable. 
In four dimensions the problem is more involved. We realize that 
condition (T.11.3) is verified almost everywhere on the simplex $4: 

r=(il+43)(iz+4~)=s(1-s), 0_<s<l  (T.11.8) 

In its interior we find 0_<r_<�88 with r=�88 if and only if s=�89 The 
equation s = �89 determines the plane 41 + I3 = �89 (see Figs. 31 a and 34 b). 
V apparently is a Lyapunov function solely in the weaker sense. This 
result suggests that the central fixed point at least is stable. To prove 
asymptotic stability we introduce new variables x, y, z 

x = - 2 ( 4 2 + ~ 3 ) + 1  2 = - ( l + z ) ( y - x z )  

y = 2 ( i l  + 4 2 ) -  1 p=(1-z ) (x -yz )  
z=2(41 +~3)--1 i = z 3 - - z + x Z - y  z 

which shift the origin of the coordinate system into the center of the 
simplex S 4 and place the coordinate axes through the midpoints of 
the edges 23, 34, and 13, respectively, (cf. Fig. 31a). The fourth 
variable 4 4 = 1 - 4 1 - I 2 - 4 3  is eliminated. The z-axis thus points 
perpendicular to the critical plane ~l + I3-2,-~- which is spanned by 
the two variables x and y. In this plane the dynamic system simplifies 
to 2 = - - y ,  ~=x ,  and ~ = x  2-y2 .  
The time derivative of z vanishes only along the two lines x = • y or 
I2 = ~4 and i l  = 43, respectively. Consequently, there is no trajectory 
in this critical p l ane -excep t  the fixed point ~ 0 -  and the system will 
pass through it in infinitely short time. Along any given orbit the 
condition 12(~(t))<0 is fulfilled at almost every moment, the only 
exceptions being the instances when the critical plane r + 43 =�89 is 
passed. Along all trajectories, V(~(t)) is monotonically decreasing 
with t. V is a strict Lyapunov function, and thus the fixed point ~0 is 
asymptotically stable. 
In higher dimensions n > 5, V(~) is not a Lyapunov function and 
therefore no predictions on the stability of the central fixed point can 
be made by this method. 

-n6i,  and k=j+l-ng)i,)  and one fixed-point edge ~ (k~ei-1 
+ n6i, ). The trajectories of this system are shown in Figure 31 b. They 
start from some point of the fixed-point edge and end at the corner k, 
which thus represents the only stable attractor of the system. The 
species I~ consequently represents the survivor or remnant of this 
fragment of a hypercycle. 
The investigation on the boundaries of basic hypercycles can be 
generalized to higher-dimensional systems. From the results ob- 
tained we can make the desired predictions about the long-term 

development of broken hypercycles. After one species in a hypercycle 
has been extinguished by some external event, the remaining dynamic 
system is unstable and approaches a pure state after long enough 
time. In all cases, a species will be selected which occurs just before 
the break in the hypercycle. In other words, species I x will remain the 
last remnant of a hypercycle which has been destroyed by extinction 
of its constituent I j, when i is the precursor o f j  (j = i + 1 -  6~,). This 
behavior is not unexpected in light of the known properties of 
catalytic chains. 
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Fig. 31. Dynamic topology of the elementary hypercycle of dimension n = 4. The dynamic system on the simplex consists of  the system 4 on 
the interior IS4 and four equivalent systems of type 3A on equilateral triangles ($3), each of which is circumscribed by two flowing edges 2A 
and one fixed-point edge 2B. a) The system on the interior is described appropriately in the variables x, y, and z (see Table 11). The 
manifold of closed concentric orbits belonging to the center of the linearized system lies in the x,y-plane (hatched region in the drawing). 
b) The dynamic system 3A: All trajectories start out from some point on the fixed-point edge (13) and end in the same corner (3). 
The dashed line connects all the points at which the trajectories are parallel to the fixed-point edge ( ~ )  : 

~2 
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Fig. 32. The 'flowing edge' 2A. The tangent vector 42 = r 1 - ~2) 2 is 
positive inside the whole physically allowed region (0 < r < 1) and 
vanishes at both ends, which represent the two fixed points of the 
system: ~i=(1,0) and Sz=(0, 1). 42>0 means that Cz is increasing 
during the next differential interval of time. Hence there is only one 
orbit on 2A leading from ~a to ~2, i.e., from corner 1 (~z =0) toward 
corner 2 (~2 = 1). The dynamic system 'flows' along this edge. Note 
that d~z/d~2 vanishes at the fixed point ~2 (~2 = 1), leading to an 
eigenvalue ~ = 0 in the linearized system. Consequently, fixed-point 
analysis fails to make a prediction about the stability of this point 

V I I I . 2 .  N u m e r i c a l  I n t e g r a t i o n  

The systems of differential equations for basic hypercycles with 
dimensions up to n < 12 have been integrated by standard numerical 
techniques. The corresponding solution curves x(t) have been 
presented in a previous paper [4] and need not be repeated, since we 
are interested in a different aspect of the problem here. Our present 
purpose is to search for stable attractors in the interior of the 
simplices S, that guarantee cooperative behavior of the constituents. 
For this goal an investigation of the manifold of trajectories is 
straightforward. 
Differential equations for trajectories are obtained by elimination of 
the explicit time dependence in the original dynamic system: 

dx2 A2 
f 2(xl, x 2 . . . . .  x,) 

dxl  A1 

dx3 A3 
- :f3(xl, X z . . . . .  x,,) 

dx 1 A, 

dx.  A. 
:L(xl,  x~ . . . . .  x,) 

dxl  A1 
(70) 

Integration of this new (n - 1)-dimensional dynamic system yields the 
trajectories as solution curves: 

x2 = g2 (x l ,  x2 . . . . .  x . )  

x 3 = g 3 ( x . , x 2  . . . .  , x . )  

x. =g.(xl ,  x2 . . . . .  x.) (71) 
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The trajectory thus is a curve in the n-dimensional concentration 
space. For  graphical representation we shall use projections of these 
curves on the planes spanned by one selected coordinate x k and by x~. 
Trajectories for hypercycles of low dimension (n = 2, 3, and 4) reflect 
the already known properties of these dynamic systems. The case 
n = 2 is rather trivial: There are only two orbits which converge to the 
central stable focus (Fig. 30). The trajectories of the three- 
dimensional  hypercycle (n = 3) are spirals which rapidly approach the 
central fixed point (Fig. 33). This kind of trajectory corresponds to 
strongly damped oscillations of the solution curves x(t). The four- 
membered hypercycle deserves further consideration. Again, the 
trajectories spiral into the center of the simplex (Fig. 34a, b). In 
contrast to the three-dimensional example, the central force is much  
weaker than  the rotational component.  Accordingly, convergence 

Fig. 33. A trajectory of the dynamic system (3) for the elementary 
hypercycle of dimension n = 3 is shown as a projection on the plane 
(x l, x2). Initial conditions: x 1 (0) = 0.98, x2(0 ) = x3(0 ) = 0.01 

c x2 e 

015 1 
~ x  I 0 L 

~' xl O L  0,5 1 0,5 1 

X 3 X2 X 2 

~ 1 7 6  �9 

) O'S ' \  x #  plone 

b 

0,5 

1 0 0 0.5 1 

0, 

d f 

Fig. 34. Trajectories of the dynamic systems (4, 5, and 12) for elementary hypercycles of dimension n = 4, 5, and 12, respectively. (1) n = 4: initial 
conditions: x 1 (0)= 0.97, xz(0 ) = x 3 (0)= x~(0)= 0.01; two projections are shown, a) Projection of the trajectory on the plane (xl, x2). The trajec- 
tory spirals into the central fixed point with hardly damped oscillations, b) Projection of the trajectory on the plane (xl, x3). The plane of the 
center manifold (x, y-plane in Fig. 31) intersects the x~, x3-plane along the line x 1 + x 3 = 1/2. Perpendicular to it we see the z-axis. Note that the 
trajectory crosses this plane (x, y) only at single points and does not  stay therein for a longer period (Table 11). (2) n =  5: projections on the 
plane (xl, x2). c) Initial conditions: x t (0) = 0.9996, x 2 (0) = x3(0 ) = x,(0) = x s (0) = 0.0001. d) Initial conditions: x 1 (0) = 0.2004, x 2 (0) = x3(0 ) = x4(0 ) 
=x~(0) =0.1999. Note that the dynamic system approaches the same limit cycle from both sets of initial conditions. (3) n =  12: projections on 
the plane x~, xz. e) Initial conditions: xl(0)=0.9989,  x2(0) . . . . .  x12(0)=0.0001, f) Initial conditions: xl(0)=0.0848,  x2(0) . . . . .  x~2(0)=0.0832. 
Again both  limit cycles are the same and  come very close to the loop 12, 23 ... 11, 12, 12 1 
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toward the central fixed point is extremely slow. A projection of the 
trajectory on the xa, xa-plane nicely illustrates the previously derived 
result that there is no orbit in the plane xa + x  3 = 1/2, x 2 +x4 = 1/2. 
Indeed, as one can see from Figure 34b, the trajectories follow closely 
a saddle-like bent surface. 
For basic hypercycles of dimension n > 5 the central fixed point 
represents an unstable saddle. There is no sink in the boundary and 
consequently one expects a stable closed orbit. The analytical 
techniques have not yet been developed to a sufficient extent to 
provide the proof of the existence of such an attractor in the interior 
of the simplices. Therefore, we have to rely on numerical results. 
Numerical integration indeed provides strong evidence for a limit 
cycle or closed orbit. Starting from various points very close to the 
center, to a face, to an edge, or to a corner of the simplex we always 
arrive at the same limit cycle after long enough time. Two typical 
trajectories are shown in Figure 34 c -  f, for elementary hypercycles of 
dimensions n = 5  and n=12,  respectively. As we can see from a 
comparison of the two Figures, with increasing n the limit cycle 
approaches more closely the loop 12, 23 , . . . ,n l  mentioned in the 
previous section. Consequently the oscillations in the individual 
concentrations become more and more like rectangular pulses. 
The use of numerical techniques also enables us to remove the 
assumption: k~ = k 2 . . .  = k n .  Calculations with arbitrary k values have 
been performed for dynamic systems of dimensions n = 4  and n=5.  
No change in the general nature of the solution curves is observed. 
Typical examples are shown in Figures 35 and 36. The individual 
concentrations in both systems oscillate. For n = 4 the concentration 
waves are damped and the dynamic system approaches the central 
fixed point. Its coordinates are determined by the following 
equations: 

k 7 1  

'Xo: ~ ~  " i - -  n O~ 

k? I 
I = 1  

j=i+ 1 -n6~. (72) 

Five-membered hypercycles with unequal rate constants show the 

same kinds of undamped concentration pulses that we have observed 
in the system with equal k values. The size of the pulses is no longer 
the same for all subunits. Time-averaged concentrations [as defined 
by Equation (67)] fulfil the above equation (72), which determines 
the position of the (unstable) central fixed point. Accordingly, the 
pulses for those species which precede a step with a relatively small 
rate constant are broad, whereas those of species preceding a 
relatively fast reaction step are small in width and height. The system 
thus regulates the concentration of its constituents in such a way that 
the overall production rate is optimized. 
Hypercycles of higher dimensions (n _>_ 5) do not exist in stable states 
with constant stationary concentrations but exhibit wave-like oscil- 
lations around an unstable fixed point in the center. Nevertheless, the 
constituents show cooperative behavior since their concentrations 
are controlled by the dynamics of the whole system and no 
population variable vanishes. 

Dynamic systems corresponding to elementary hyper- 
cycles have one and only one attractor in the interior of 
the simplex, the basin of which is extended over the entire 
region of positive (nonzero) concentrations of all com- 
pounds. At low dimension (n<4)  the attractor is an 
asymptotically stable fixed point, namely, a foxus for 
n = 2  and a spiral sink for n - 3  and n = 4 .  In systems of 
higher dimensions (n > 5) numerical integration provides 
strong evidence for the existence of a stable limit cycle. 
All elementary hypercycles thus are characterized by 
cooperative behavior of their constituents. 
Due to their dynamic features hypercycles of this type 
hide many yet unexplored potentialities for self- 
organization (dissipative structures, e.g., in case of 
superimposed transport). They may also play an impor- 
tant role in the self-organization of neural networks. 

11 

. . . . . .  

Fig. 35. Solution curves of the dynamic system for an elementary 
hypercycle with dimension n = 4  and unequal rate constants (kl 
=0.25, k2=1.75, k3=1.25, k4=0.75; initial conditions: x1(0 ) 
=0.9997, xz(O)=x3(O)=x4(O)=O.0001; full concentration scale= 
1 concentration unit, full time scale = 1000 time units). Note that the 
concentration of 11 (the component preceding the fastest step) is 
smallest whereas that of I4 (the component before the slowest step) is 
largest 

t i m e  > -s 

Fig. 36. Solution curves of the dynamic system for an elementary 
hypercycle with dimension n = 5  and unequal rate constants (k~ 
=25/13, k 2 = 1/13, k 3 = 19/13, k4= 1, k s =7/13; initial conditions: 
x1(0)=0.9996, x2(O)=xa(O)=x4(O)=xs(O)=O.O001; full concen- 
tration scale = 1 concentration unit, full time scale = 1000 time units). 
Note that the concentration of 15 (the component before the fastest 
step) is smallest, whereas that of/1 (the component before the slowest 
step) is largest 
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IX. Hypercyeles with Translation 

IX.1. Ideal Boundary Conditions 
and General Simplifications 

An appropriate set of boundary conditions can be 
realized in a flow reactor [4, 9, 55, 56]. The con- 
centrations of all low-molecular-weight compounds 
(m~, i= 1, 2,..., 2) are buffered with the help of con- 
trolled flow devices, at the same time providing the 
energy supply for the system. The concentration vari- 
ables x~ refer to the macromolecular species synthesized 
in the reactor, while all other compounds of the 
'standard reaction mixture' do not show up explicitly 
in the differential equations, but appear implicitly in 
the effective rate constants of Equation 30. 
Because of technical difficulties and also for heuristic 
reasons it is impossible to account explicitly for all 
elementary steps in the reaction mechanism. We rather 
have to apply simplified reaction schemes which lead to 
an appropriate 'over-all' kinetics. This strategy is a 
common procedure in chemical kinetics. Acid base 
reactions in aqueous solution for example are generally 
described by phenomenologic equations which do not 
account for individual proton jumps, but just reflect 
changes in protonation states of the molecules 
considered. 
For the mechanism of template-directed polymeri- 
zation and translation, the rate equations contain ~he 
population numbers of the complete macromolecules 
as the only variables. Hence chain initiation and 
propagation steps are not considered explicitly. A 
justification for these approximations can be taken 
from experiments. Actually, the kind of 'over-all' 
kinetics we are using here is well established (cf. Part C). 

E1 E 2 

E n E3 

En. ~' ~\IB ~ E4 

En_2 E 5 
Fig. 37. Schematic diagram of a hypercycle with translation. Dimen- 
sion: 2 x n, i.e., n polynucleotides and n polypeptides 

protein with polymerase activity. Altogether these 
primordial proteins provide at least two functions: 
specific replication and translation. How such a system 
can be envisaged is shown in Part C. 
The couplings between the I~ and Ei have to be of a form 
which allows the closure of a feedback loop (Fig. 37). In 
mathematical terms cyclic symmetry is introduced by 
assuming specific complex formation between the 
enzyme Ej and the polynucleotide I~, whereby j = i + 1 

--n(~in. 

The kinetics of polynucleotide synthesis follows a Michaelis-Menten- 
type reaction scheme, although we do not introduce the assumption 
of negligibly small complex concentrations. 

IX.2. The Kinetic Equations 
Ki 

I,+Ej~-I~Ej; I ,Ej+~v~M~ [~I,+I,Ej (73) 

The catalytic hypercycle shown schematically in Figure 
37 consists of two sets of macromolecules: n polynuc- 
leotides and n polypeptides. The replication ofpolynuc- 
leotides (li) is catalyzed by the polypeptides (Ei) which, 
in turn, are the translation products of the former. The 
hypercyclic linkage is established by two types of 
dynamic correlations: 
1. Each polynucleotide I i is translated uniquely into a 
polypeptide El. The possibility of translation evidently 
requires the existence of an appropriate machinery 
which is composed of at least some of the translation 
products E~ and which uses a defined genetic code. 
2. Polynucleotides and polypeptides form specific com- 
plexes that are also catalytically active in the synthesis 
o f  polynucleotide copies. The polypeptides may be 
specific replicases or specific cofactors of a common 

The four nucleotide triphosphates and their stoichiometric coef- 
ficients are denoted by M~ and v[; 2 = 1, 2, 3, 4, respectively. Now we 

0 0 introduce z i for the concentration of the complex I~Ej and xj, y~ or x j, 
Yl for the total or free concentrations of polypeptides (E j) and 
polynucleotides (Ii). Mass conservation requires: 

x ~  i and yO=y~+zi (74) 

For  fast equilibration of the complex the concentration z~ is related to 
0 and yO as: the total concentrations x~ 

zi=Y~176 / 1 /  4y~ ~ \ 
U - V ( y  ~ + x~ + (75) 

Polypeptide synthesis is assumed to be unspecific, i.e., translation of 
the polynucleotide I~ occurs with the help of a common 'appara tus ' :  

Ii + Z v~M~ ~ Ii + E~ (76) 
A 
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M~ and v~ denote the activated amino acids and their stoichiometric 
coefficients, respectively. Selection constraints may be introduced 
properly by controlling total concentrations for both kinds of 
biopolymers (I and E) independently. By analogy with the constraints 
of constant organization we keep both sums of concentrations 
constant: 

0 O. 0 0 ~,,Yk =Cx, EXk =eg (77) 
k k 

Under all these conditions our dynamic system consiting of 2n 
coupled differential equations reads: 

0 n 

~ I  k = l  

0 n 

yco=kly i x~ - ~  ~ kkYk 
Cg k = l  

i = 1, 2, ..., n. (78) 

to an approach to condition (82). As a consequence, 
the approximations 

z i ~ x  ~ and y ,~yO (83) 

become valid, leading to a 2n-membered catalytic 
cycle, but not a hypercycle. Thus under saturation 
conditions, i.e., at high concentrations of the con- 
stituents, the hypercycle loses the behavior typical of 
nonlinear growth rates. As a unified system it simulates 
the properties of a simple catalytic cycle, which is 
equivalent to an autocatalyst or self-reproducing unit. 

IX.3.  Numerical  Solutions 

For our purpose, it is sufficient to discuss two limiting 
cases: 
1. The concentration z 0 of the complex IgEj becomes 
proport ional  to the product  of polynucleotide and 
polypeptide concentrations at sufficiently low 
concentrations: 

o o . 1 o o o (79) y~, x j  ~ K i, z i ~ - -  y~ x j  ; zi ~ yO, x j  
Ki 

If  we further assume the first-order translation process 
to be fast as compared to the second-order replication 

- an assumption that is well justified, at least for low 
concentrations of po lynuc leo t ides - the  polypeptide 
concentration will assume a stationary value that can 
be included in the rate parameters. The formation of 
polynucleotides then is described by a system of 
differential equations that is typical of an elementary 
hypercycle of dimension n. 
2. At high concentrations, z~ becomes equal to the 
smaller of the two variables :a 

z~ = inf(y ~ x ~ (80) 

Accordingly, we approach two possible limiting 
situations 

z , ~ y  ~ (8a) 
o ~ .  0 o (82) K i ~ X j  Yl : z i ~ x j  

In the first of these two cases the polynucleotides 
behave like independent competitors, while the poly- 
p e p t i d e s - d u e  to o Yi = Y~ - zi ~ 0 - remain stationary. 
Under natural conditions, where constraints like 
'constant  total concentrat ions '  usually do not apply 
- a t  least not for the assumed small values of y - t h e  
resulting growth of polynucleotides would lead to a 
reversal of the concentration ratios y : x  and hence 

3 inf=infimum is the mathematical term representing the smallest 
member of a set. 

The differential equations derived for catalytic hyper- 
cycles with explicit consideration of complex formation 
between the polynucleotides and polypeptides are 
difficult to study by analytical methods, because of the 
irrational expressions involved. Numerical integration 
is t ime-consuming in these cases, but nevertheless, it 
represents the only source of information on the 
properties of these dynamic systems. To illustrate the 
dynamics of polynucleotide-polypeptide hypercycles 
we shall present computer graphs of solution curves as 
well as trajectories. 
In comparison to elementary hypercycles the 
polynucleotide-polypeptide systems contain a new 
class of parameters, namely, the association constants 
of the complexes, K z. As to be expected from the 
differences in kinetic behavior at the low and high 
concentration limits, the equilibrium constants exhibit 
a dominating influence on the dynamic properties of 
the system. For  the sake of a systematic investigation 
we reduce the number  of independent parameters. The 
assumptions made are essentially the same as those 
used for the elementary hypercycles: All rate constants 
for polynucleotide replication, f l  =f2 . . . .  f , = f  for 
their translation into polypeptides k l = k 2 . . . . .  k n = k ,  

and all association constants, K~ = K  2 . . . . .  K , = K  
are assumed equal. Then, we study the influence of K on 
the properties of the dynamic systems at fixed values of 
f and k and for a constant set of initial concentrations. 
For  hypercycles of dimensions n < 4 the solution curves 
approach a stable stationary state after  long enough 
time. The individual concentrations may exhibit dam- 
ped oscillations. The dynamics of these systems are 
essentially the same as for hypercycles with higher 
values of n and small equilibrium constants. 
The dynamics of higher-dimensional hypercycles are 
more complicated. The long-term behavior of the 
system changes with increasing values of the equilib- 
rium constant K. Below a certain critical.value (Kor) 
the system converges toward stable stationary states, 
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Fig. 38. Solution curves of the dynamic system for a hypercycle with 
translation. Dimension: 2 x 6, k = 0.25; initial conditions: y~(0)= 5.0, 
y2(0) . . . . .  y6(0)=0.5; xl(0 ) . . . . .  x6(0)=l.0; full concentration 
scale = 5 concentration units, full time scale = 1000 time units. The 
value of the equilibrium constant K is below the critical value for the 
Hopf bifurcation and hence a damped oscillation is observed 

a 12 c 

b 

> 11 11 

d 

Fig. 39. A trajectory of the dynamic system for a hypercycle with 
translation. Dimension: 2 x 5, k = 1.0; initial conditions: y~ (0) = 5.0, 
y2(O) = y3(O)= y4(O)=ys(O)=0.5; xlO)=x2(O)=x3(O)=x4(O)=x,(O) 
= 1.0. a) Projection of the trajectory on the plane (Yt, Ya) showing the 
concentrations Of the polynucleotides I~ and 12. b) Projection on the 
plane (y~, x~) showing the concentrations of the polynucleotide I1 
and its translation product, the enzyme E~. Note that the con- 
centration of E~ is roughly proportional to that of 1~ and thus the 
condition for simplifying the hypercycle with translation is fulfilled to 
a good approximation, c) Projection on the plane (x~, Y2) showing the 
concentrations of the polypeptide Ea and the polynucleotide 12, the 
formation of which is catalyzed by the former, d) Projection on the 
plane (xl, x2) showing the concentrations of the polypeptides Ea and 
E 2. Note that K again is below the critical value of the Hepf 
bifurcation and the trajectory converges to the central fixed point 

whereas limit cycles are obtained for larger values of 
K(K > Kor ). According to the appearance of solution 
curves and trajectories we distinguish four different 
cases, arranged with respect to increasing values of the 
equilibrium constant K: 

1. At small values of K the dynamic behavior is 
qualitatively the same as of hypercycles of lower 
dimensions. The solution curves exhibit strongly dam- 
plod oscillations (Fig. 38) and the trajectories spiral 
quickly into the center, which represents a stable 
stationary state (Fig. 39). 

2. In principle we find the same general type of 
dynamic behavior as in case (1). The oscillations, 
however, are damped only slightly and the approach 
toward the stationary state is extremely slow 
(Fig. 40a, b). The situation is quite different from case 
(1), because the damping terms do not show up in 
normal mode analysis but require consideration of 
nonlinear contributions. Phenomenologically this fact 
reveals itself in the appearance of initially (almost) 
constant amplitudes of oscillation. This situation oc- 
curs at values of the equilibrium constant K that are 
slightly smaller than the critical value Ko~, i.e.: K =Kcr 
-cSK. 
3. At values of K that are slightly larger than the 
critical equilibrium constant (K=Kcr+cSK), we ob- 
serve an interesting phenomenon. The dynamic system 
first behaves much as in case (2). The individual 
concentrations oscillate with relatively small ampli- 
tudes. In contrast to case (2), the amplitudes increase 
slightly during the initial period. After this phase of 
sinusoidal oscillation, however, the concentration wa- 
ves change abruptly in shape and frequency (Fig. 40c, d) 
and then resemble closely the rectangular pulses which 
we encountered in basic hypercycles of high dimension. 
Finally, the dynamic system approaches a limit cycle. 

4. At large values of K the individual concentrations 
oscillate with increasing amplitude and the dynamic 
system steadily approaches the limit cycle (Fig. 40e, f). 
The kind of change in dynamic behavior with a 
continuously varying parameter as we have observed 
here is known in the literature as 'Hopf bifurcation' 
[58]. The characteristic retardation in convergence 
toward the long-term solution that we have found in 
cases (2) and (3) has been described also for other 
dynamic systems and is usually called the 'critical 
slowing down' at the Hopf bifurcation. In the case of 
hypercycles, the 'slowing down' around the critical 
value of K becomes more pronounced at larger values 
of n. In the five-membered cycle (n= 5) a situation 
corresponding to case (3) is hardly detectable. The 
catalytic hypercycle with n= 10, on the other hand, 
shows a much longer initial period, as referred to in case 
(3), than the six-membered system (Fig. 41). The initial 
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Fig. 40. Trajectories of the dynamic systems for hypercycles with translation, a and b) Dimension 2 x 5, K = 1.1, initial conditions: yl (0)= 5.0, 
Y2 (0)= Y3 (0)= y4(0)= Y5 (0)= 0.5; X 1 (0)= x 2 (0)= x 3 (0)= x4(0 ) = x s (0)= 1.0; projections are shown on the planes for the concentrations of 11, 12, 
and 11, El, respectively; the value of the equilibrium constant K is slightly below the Hopf  bifurcation and we observe very slow convergence 
toward the stable central fixed point, c and d) Dimension 2 x 6, K = 0.2784, initial conditions: Yl (0) = 5.0, Y2 (0) . . . . .  Y6 (0) = 0.5, x 1 (0) . . . .  x 6(0) 
= 1.0; projections are shown on the planes for the concentrations of 11, I2, and 11, El, respectively; the value of the equilibrium constant  K is 
slightly above the Hopf bifurcation and we observe a metastable limit cycle before the system finally converges to the stable limit cycle, e and 
l) Dimension 2 x 5, K = 1.2, initial conditions: yl(0)= 5.0, y2(0) =y3(O)=Y4(O)=ys(O)=0.5, xl(O)=xz(O)=x3(O)=x4(O)=xs(O)= 1.0; projections 
are shown on the planes for the concentrations of/1,  I2, and 11, El, respectively; the value of the equilibrium constant  K is above the Hopf 
bifurcation and the system converges steadily toward the stable limit cycle. Note that the proportionality between E 1 and 11 is reasonably well 
fulfilled in all three cases (b, d and f) 

- -  t i m e  > 

Fig. 41. Solution curves of the dynamic system for a hypercycle with 
translation. Dimension 2 x 10, K=0 .026 ;  initial conditions: yl(0) 
=5.0, y2(0) . . . . .  ylo(0)=0.5;  x1(0 ) . . . . .  x l0(0)= 1.0; full concen- 
tration scale= 10 concentration units, full t ime scale= 1000 time 
units. The value of the equilibrium constant  chosen is slightly above 
the critical value for the Hopf  bifurcation. We observe a metastable 
oscillatory state which changes suddenly into the final limit cycle 
with the characteristic concentration waves 

phase of sinusoidal oscillations resembles a metastable 
oscillatory state. The transition to the final limit cycle 
becomes sharper with increasing value of n and is quite 
pronounced for the ten-membered hypercycle. 
All polynucleotide-polypeptide hypercycles studied so 
far have an attractor in the interior of the physically 
accessible range of concentrations. They are character- 
ized by cooperative behavior of their constituents. 
Depending on the values of the product of total 
concentrations (c~ and cP0) and of association constants 
(K) as well as on the size of the hypercycles, we observe 
stable fixed points or limit cycles. Small K values then 
are complementary to high concentrations and vice  

versa.  The long-term behavior at low and high con- 
centration limits, obtained by numerical integration, 
agrees completely with the predictions based on the 
analysis given in the last section. One of the basic 
simplifications, which concerned quasi-stationarity of 
polypeptide synthesis, can be checked directly by an 
inspection of the projections of trajectories onto the E~, 
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11 plane. For the stationary-state approximation we 
expect to find straight lines. As we can see from Figures 
39b and 40b, d,f, proportionality of the two con- 
centrations is roughly fulfilled and the simplified 
treatment appears to be well justified. It was, actually, 
the purpose of the numerical analysis of this complex 
reaction mechanism to verify the equivalence of com- 
plex and elementary hypercycles as far as their self- 
organizing properties are concerned. The conclusions 
reached with elementary systems therefore are relevant 
also for all kinds of realistic hypercycles of a more 
complex structure (cf. Part C). 

X. Hypereyclie Networks 

X.1. Internal Equilibration and Competition 
between H ypercycles 

The concept of internal equilibration as introduced in 
Section VI seems to be very useful for a straightforward 
analysis of more complex networks since it permits a 
reduction of the number of independent variables. 
At first we investigate the process of equilibration in 
basic hypercycles. For that purpose we calculate time 
averages of the individual concentrations Xdt ) -  see 
Equation (67) and compare them with the correspond- 
ing solution curves xi(t) (Fig. 42). No matter whether 
the final state is stationarily inert or oscillating, the time 
averages X~(t) become practically constant after a few 
cycles. The assumption of established internal equilib- 
rium therefore seems to be a well-justified approxima- 
tion for hypercycles. Nevertheless, we shall check it in a 
few cases. 
Using the concept of internal equilibration we can 
derive an equation for the net growth rate of entire 
hypercycles: 

i = 1  i = 1  i = 1  

1 
- - - -  C 2 ~ K c  2 = F ( c )  

i = i  

j= i+  l -nS i ,  

(84) 

Hypercycles, thus, are characterized by quadratic 
growth rates and follow a hyperbolic growth law. 
They represent appropriate examples for the kind of 
non-Darwinian 'once-for-ever' selection discussed 
in Sections VI and VII. 
According to the expression for k in Equation (84) the 
rate constant of an entire hypercycle will be of the same 
order of magnitude as that of its slowest single step. 
Under the condition of unlimited growth, hypercycles 

i i 0.5 

~  ~ 

i i 0.5-  

o 560 1000 
t i m e  > 

l 1 

X i 

0.5- 

0 

i i 0.5- 

0 5(~0 _ _  t i m e  > 1000 

Fig. 42. Solution curves of the dynamic systems for elementary 
hypercycles of dimension n = 4  and n=  5 with equal rate constants 
and time-averaged concentrations X(t); (a) n = 4  and b) n=  5. Note 
that X(t) reaches X after a few oscillations, i.e., internal equilibrium 
is established relatively fast in both examples 

grow hypothetically to infinity at a certain critical time 
(too). In fully equilibrated systems these instabilities 
occur at 

G = [kc( t  = 0)3-1 (85) 

The results for equilibrated hypercycles calculated 
from Equation (85) are compared with the values 
obtained by numerical integration of systems far off 
internal equilibrium (t~) in Table 12. In fully equilib- 
rated systems the instabilities always occur somewhat 
earlier, t~ < t~. On the whole, these numerical differ- 
ences are of minor importance only, the general 
behavior of the dynamic systems and the relative values 
of too being predicted correctly. The assumption of 
internal equilibration thus appears to be a good 
approximation for most nonequilibrated systems. 
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Table 12. Instabilities in the dynamic systems for hypercycles under unlimited growth conditions 

Dimension Boundary and initial conditions Critical time constants 

Rate constant Initial concentration Initial distribution" At equilibrium Far off equilibrium 
k c(O) x(O) tL tL 

2 �89 0.55 (0.5, 0.05) 3.64 5.0 
3 ~ 0.60 (0.5, 0.05, 0.05) 5.00 6.8 
4 ~ 0.65 (0.5, 0.05, 0.05, 0.05) 6.15 7.3 

a The distribution of initial concentrations applied in the numerical integration of the system far off equilibrium x(0)=(xl(0), x2(0 ) ...). 

Select ion a m o n g  ent ire  hypercycles  as single enti t ies 
can be s tudied  genera l ly  under  the a s sumpt ion  of  
in ternal  equi l ibr ium.  The  dynamic  systems ob ta ined  
thereby  are, of  course,  ident ica l  with those  descr ib ing 
independen t  compe t i to r s  tha t  are  charac te r ized  by  
quad ra t i c  g rowth  rates. C o m p e t i t i o n  be tween  non-  
equ i l ib ra ted  hypercycles  is more  difficult to investigate,  
since only  numer ica l  in tegra t ion  of  the  systems of  
differential  equa t ions  is possible.  An  example  has  been 
t rea ted  elsewhere [53], demons t r a t i ng  tha t  the assump-  
t ion of  in ternal  equ i l ib ra t ion  represents  a powerful  
app rox ima t ion .  

As an example for competing systems we consider the two hyper- 
cycles H A and H B with n A and n B members subject to the constraints 
of constant organization. 
If there is internal equilibration the system reduces to two com- 
petitors with quadratic growth-rate terms. From the results of fixed- 
point analysis we recall that hypercycle H A will be selected when its 
relative initial concentration CA(0 ) exceeds a critical limit: 

k• (86) limcA(t)=C o if CA(0) > ~  C o 
t ~  

Otherwise hypercycle H B wins the competition. 
It seems illustrative to consider one more special case. We assume the 
individual rate constants to be very similar within a given hypercycle, 
i.e., k 1 ~ k 2 . . . . .  k, =kA and k,,+ 1 "~ k,+ 2 . . . . .  k,+,, =kB- Then the 
rate constants for entire hypercycles are obtained as follows: 

1 
kA=--k  A and k B = l k B  (87) 

F/A /'~B 

As we see, the constants are inversely proportional to the numbers of 
members in the hypercycle and consequently, smaller cycles seem to 
have a certain selective advantage. If we assume, however, all 
macromolecules to be present at roughly the same concentrations (~), 
the disadvantage of the larger cycle is compensated exactly by a 
larger value of the total concentration, c: 

CA(O)=nA,N~ , C B ( 0 )  = F/B �9 3~ a n d  

limcA(t)=c o if kA>kB 
t ~ c o  

C o = (n A + n B) 
(88) 

Therefore, the chance of survival is roughly the same for hypercycles 
of different sizes or dimension n, provided the initial concentrations 
of the individual members and the rate constants for the replication 
steps are equal. 
The results obtained for two hypercycles can be generalized easily to 
N independent competitors. 

XI.2. Parasitic Coupling and Catalytic Networks 

The cyclical ly c losed ca ta ly t ic  link, which connects  all 
active member s  I t ... I ,  of  a hypercyc le  might  include 
b ranch ing  po in ts  and  thereby  p rov ide  a fur ther ing of  
external  species I k .  1 ..... not  being an int r ins ic  pa r t  of  
the coopera t ive  unit.  W e  call these external  member s  
parasi tes .  To make  an ana ly t ica l  t r ea tmen t  feasible we 
shall  assume in ternal  equ i l ib r ium within the cycle 
(Table  13). Two dynamic  systems descr ib ing a hyper -  
cycle and a s ing le -membered  paras i t e  have  been in- 
ves t igated by  the f ixed-point  method .  
The  first example  is represen ted  by  a ca ta ly t ic  hyper -  
cycle and a paras i te  tha t  is not  capab le  of  self- 
rep l ica t ion  (Fig. 43a). Above  a cer ta in  th resho ld  value 
of  to ta l  concen t ra t ion  (knco>k), as we can see f rom 
Table  13, hypercycle  and paras i t e  a r e  present  with 
nonze ro  concen t ra t ion  at  the s t a t iona ry  State. The  
equi l ib r ium concen t ra t ion  of  the hypercyc le  grows with 
increas ing Co, whereas  the  concen t ra t ion  of  the paras i te  
remains  constant .  At  high enough concent ra t ion ,  con- 
sequently,  the paras i te  will lose its i m p o r t a n c e  for the  
dynamics  of the  cycle complete ly .  At  low to ta l  con-  
cen t ra t ion  (knco<k) the  system becomes  unstable.  
Wi th in  the l imits  of the  a s sumpt ion  of  in terna l  equil ib-  
r ium the paras i t e  des t roys  the  hypercycle  and  finally 
represents  the only r e mna n t  of  the  dyna mic  system. 
The  second case descr ibes  the deve lopmen t  of  a hyper-  
cycle with a self-replicat ive paras i t e  a t t ached  to it 
(Fig. 43b). This dynamic  system is charac te r ized  by 
sharp  select ion depend ing  on the re la t ive  values of  the 
ra te  cons tants  k and  k A. F o r  k > k A the paras i t e  des t roys  
the  hypercycle  whereas  the inequa l i ty  k < k  A implies  
tha t  the paras i t e  dies out. I t  might  be of  some interest  to 
cons ider  the dyna mic  system explici t ly  on the level of  
ind iv idua l  polynucleot ides .  F r o m  Tab le  13 we ob ta in  

x~ k k;+~x (89) k = k x - - = x - - -  
CA ~ k i  -~ 

i 

under  the cond i t ion  of es tabl i shed  in terna l  equi l ibr ium.  
Us ing  the p rev ious ly  der ived  express ion 

k A = ( Z  k/- ~) -~ 
i 
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we find: 

k~ 1 1 (90) 
. . . . .  < --* kx <k~+ ~ k < k h ~ k ~ + ~  Zk~-~ Z k ?  ~ 

i i 

Thus the result of selection is determined completely by 
the ratio of the two rate constants for the reaction steps 
starting out at the branching point, no matter what the 
yalues of the other rate constants in the hypercycle are. 

Numerical integration of dynamic systems of the types shown in 
Figure (43) has been performed in order to study the influence of 
deviations from the equilibrium distribution. In fact all the con- 
clusions drawn here can also be verified for systems far off 
equilibrium. 

@--Ex @--@ 
a b 

Fig. 43. Schematic diagrams for hypercycles with parasitic units, 
a) the parasite is not self-reproductive, b) the parasite is self- 

roductive. The branching is assumed to occur at the component 

Table 13. Fixed-point analysis of hypercycles with parasitic couplings 

A hypercycle with a parasitic unit I S attached to it (Fig. 43) is 
described by n + 1 differential equations, n of which are identical with 
those of the isolated hypercycle. For  the (n+l ) - th  differential 2 > 0  
equation, which defines the concentration of the parasite, we obtain: 
[Ix] =x ,  [Iv] =x~, and 

2 < 0  X 
5 c = k ~ x , - - - 4 )  (T.13.1) 

CO 

for the system depicted in Figure 43a and 

X 
2 = k , x , x - @  $ ~ (T.13.2) 

Co 

for the one exemplified in Figure 43b. 
If an equilibrium is established within the hypercycle then the n + 1 
differential equations reduce to two. Here the introduction of new 
rate constants turns out to be appropriate: 

Xv n 

k = k ~ . - - :  CA= ~, Xj (T.13.3) 
CA j= 1 

and k g as defined in Equation (84). 
(1) The parasite is not self-reproductive (cf. Fig. 43a): 

�9 2 CA 2 
CA=kACA----(kACA +kCA) ; Co=CA-~-X (T.13.4) 

Go 

X 
2 = k c A - - - -  (k A CA 2 + k CA) 

CO 

This dynamic system has two fixed points: 

kAC 0 -- k k 
2 = - -  (T.13.5) 

X l :  CA= kA ' kA 

09(1) = (kACo-k) 2 

kA 2 > 0  

x2: CA= 0, X=C0; C0(2)=0 (T.13.6) 
and 

~a is stable unless the total concentration meets the critical condition 
Co= k/k A. ~ < 0 
Stability analysis of X2 requires a detailed inspection of the higher- 
order terms. For a point X = C o - b X  we find 

2 =  (6x)2 ( k -  k Aco + kASx) (T.13.7) 
c O 

which leads to 

for co <k/k  A 

for co>k/k  a. 

Thus, the fixed point ~:2 is stable at concentrations below the critical 
value and unstable above it. At low concentrations ~i lies outside the 
physically accessible range, ~ = c o is the only stable stationary state, 
and the hypercycle is destroyed by the parasite�9 At high con- 
centrations the stable fixed point ~x lies on the simplex $2, which 
means that hypercycle and parasite are coexistent. 
(2) The parasite is self-reproductive (Fig. 43b): 

~A=kAc~--CA(kAC2+kCAX), C0 = C A ~ - X  
CO 

2 = k C A X  --X(kAC2-}-kCAX ) (T. 13.8) 
CO 

The system has two fixed points at the corners of S 2: 

xl :  CA=Co, ~ = 0 ,  o(1)=(k-kA)Co (T.13.9) 

x2: CA=0, if=Co, e~(/) =0  (T.13.10) 

The first fixed point is stable, provided that k A > k. For the second 
fixed point it is again necessary to check the higher-order terms. At 
X = C o - f i x  we find 

2 = k --  k A (c]x)2 (Co _ 3 x )  (T. 13.11) 
CO 

which now leads to 

for k > k  a 

for k < k  A. 

Thus, ~2 is stable if the inequality k > k  g holds. The system is 
competitive, which signifies that hypercycle and parastic unit cannot 
coexist except in the special situation where the rate constants are 
equal (k = kA). 
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The results obtained for single-membered parasites can be extended 
to arbitrary chains using the results derived in Section VII.6. In 
general, the fate of the entire parasite is strongly coupled to the 
development of the species attached to the cycle: The parasite will die 
out always when the concentration of the species after the branching 
point approaches zero. There is one interesting special case: 
kx=kv 1. The differential equations for I~+ 1 and I x are identical and 
hence the ratio of the two species always remains constant at its initial 
value. Numerical integration of several dynamic systems of this type 
showed that in this special situation (k~=k,+ 1) all members of the 
parasite besides the species I x will die out. 
Chain-like parasites might fold back on the hypercycle, thereby 
leading toward a catalytic network with a branching point and a 
confluent. By numerical integration we found that systems of these 
types are unstable: The less efficient branch, i.e., the branch with the 
smaller values of the rate constants k dies out and a single, simple 
hypercycle remains. 

Allowing for arbitrary assignment of catalytic coupling 
terms to a set of self-reproductive macromolecules we 
shall encounter highly branched systems or com- 
plicated networks much more frequently than regular 
hypercycles. It is of great importance, therefore, to 
know the further development of these systems in order 
to make an estimate of the probabilities of hypercycle 
formation. Analytical methods usually cannot be ap- 
plied to this kind of system and hence we have to rely on 
the results of numerical techniques. 
Some general results have been derived from a variety 
of solution curves obtained by numerical integration of 
the differential equations for various catalytic net- 
works. As suggested by the previous examples, these 
systems are not stable and disintegrate to give smaller 
fragments. Apart from complicated dynamic struc- 
tures, which owe their existence to accidental coinci- 
dence of the numerical values for different rate con- 

stants, the only possible remnants of catalytic networks 
of self-replicative units are independently growing 
species, catalytic chains, or catalytic hypercycles. Thus 
any catalytic network consisting of self-replicative 
units with uniform coupling terms will disintegrate 
either to yield a hypercycle which then is superior to the 
other fragments or to give competitive dynamic sys- 
tems that are not suited for cooperative evolution. 

XI.3. Hierarchy of Coupling Between Hypercycles 

In principle, hypercycles may be coupled to yield more 
highly organized systems by introduction of appropri- 
ate catalytic terms into the rate equation. We consider 
two basic hypercycles H A and H R and assume that the 
hypercycle H A produces a catalytic growth factor for 
H B and vice versa. Such a growth factor might be a 
constituent of the hypercycle or a substance produced 
by it. From our previous experience we would expect 
that mutual catalytic enhancement will lead to cooper- 
ative behavior. 
To simplify a straightforward analysis, we assume in- 
ternal equilibrium to be established in both hypercycles. 
The catalytic terms are of third order with respect to 
molecular concentrations (kAClC B and kBCA c2, re -  

s p e c t i v e l y ,  see also Table 14). Consequently, we may 
neglect the second-order growth functions of the un- 
catalyzed system at high enough concentrations. Fixed- 
point analysis is not sufficient to study the dynamic 
system obtained, since it yields zero eigenvalues for all 
normal modes. The vector field, however, can be 
investigated easily because the system has only one 

Table 14. Fixed-point analysis of catalytically coupled hypercycles H A 

(1) Coupling terms of third order: 

CA=kAC2cB--CA d,); O=(kACA +kBcB) CACB 
Co 

cB=kBcAc2--CB (o; CO=CA +C B 
CO 

(T.14.1) 

Fixed-point analysis of the dynamic system yields: 

XI: CA=CO, C'B = 0; O9=0 (T.14.2) 

x2: CA =0 ,  CB=C0; O9=0 (T.14.3) 

The system is competitive. Analysis of the higher-order terms (Fig. 
44) reveals that ~,1 is stable for kA>k w The condition kA<k~, on the 
other hand, leads to stability of x2. 

and H B 

(2) Coupling terms of fourth order: 

dA=kAC~c~--CA~b; ~=(kA +kB) C2C 2 
Co 

ds=kBc2c~-% ( o Co=CA +CB (T.14.4) 
CO 

This dynamic system is characterized by three fixed points: 

xl :  C-a =0 ,  c-B=0; co=0 (T.14.5) 

x'2: C-A =0,  C-B=C0; O9=0 (T.14.6) 

kA k B 
X3: CA = - -  e0 C B = - - C o ;  

kA + k B ' kA + k B 

co (kA +ks)~ c 3 (T.14.7) 

~3 thus represents a stable fixed point indicating cooperative 
behavior of the two coupled hypercycles H A and H B under all 
possible conditions. The vector field shown in Figure 44 reveals that 
the other two fixed points ~1 and ~2 are sources. 
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degree of  freedom. As we see f rom Figure 44 the two 
hypercycles still compete  despite the presence of  the 
catalytic factors. The kind of  catalytic coupl ing in- 
t roduced,  thus, was not  sufficient to cause cooperat ive 
behavior.  
If  we increase the order  of  the catalytic terms by one, the 
dynamic  system involves fourth-order  growth-ra te  
terms (kAc]c~, 2 2 kBCACB). Analyzing the vector field in 
the same way as before (Fig. 44), we find a stable fixed 
point  at finite concentra t ions  of  both  hypercycles 
(see also Table  14). Thus the quadrat ic  coupl ing term 
is sufficient to cause cooperat ivi ty a m o n g  catalytic 
hypercycles. 
The physical realization of  this type of  catalytic cou- 
pling is difficult to visualize at the level of  biologic 
macromolecules :  The presence of  a term like kACAC B2 2 or  

2 2 kBCAC B in the overall rate equat ions requires either a 
complicated many-s tep mechanism or an encounter  of  
more  than two macromolecules ,  both  of  which are 

improbable*.  One is tempted therefore to conclude 
that  further development  to more  complex structures 
that  consist of  hierarchically coupled self-replicative 
units does not  likely occur  by introduct ion of  higher- 
order  catalytic terms into a system growing in homo-  
geneous solution, but  rather leads toward  individual- 
ization of  the already existing functional units. This can 
be achieved, for example, by spatial isolation of  all 
members  of  a hypercycle in a compar tment .  Fo rma t ion  
of  prototypes  of  our  present cells may  serve as one 
possible mechanism leading to individualized hyper-  
cycles. After isolation is accomplished the indivi- 
dualized hypercycle may behave like a simple re- 
plicative unit. Hypercycles therefore are more  likely to 
be intermediates of  self-organization than final 
destinations. 

Conc lus ions  

CI 

b 

. .0 = CB 

ds 

.0 ~ cB 

0.S' 

0 

-0.5 

Fig. 44. Coupling between hypercycles, a) Catalytic coupling terms 
k A c] cB and k B cA c~, respectively. The tangent vector is positive inside 
the physically allowed region (0 <c~ < 1), except at the two fixed 
points; kB>k A is assumed and consequently the hypercycle c B is 
selected. The system is competitive despite the coupling term. 
b) Catalytic coupling terms kAC]C ~ and kBc]c~, respectively. The 
system contains two unstable fixed points at the corners and a stable 
fixed point at the center (~-A = gB = 0.5 because k A = ks). The system is 
cooperative 

The main object of Part B is an abstract comparative 
study of various functional links in self-replicatiVe sys- 
tems. The methods used are common in differential 
topology. Complete analytical solutions - except in spe- 
cial cases-are usually not available, since the differen- 
tial equations involved are inherently nonlinear. Self- 
reproduction always induces a dependence of production 
rates on population numbers of the respective species. 
Cooperation among different species via encoded func- 
tional linkages superimposes further concentration terms, 
which lead to higher-order dependences of rates on 
population variables. 
A comparative analysis of selective and evolutive be- 
havior does not require a knowledge of the complete 
solution curves. Usually it is sufficient to find their final 
destinations in order to decide whether or not stable 
coexistence of all partners of a functionally cooperative 
ensemble is possible. Fixed-point analysis, aided by 
Lyapounov's method and- in  some cases-by  a more 
detailed inspection of the complete vector field, serves the 
purpose quite well. The results of the combined analysis 
may be summarized as follows: 
Functional integration of an ensemble consisting of 
several self-repIicative units requires the introduction of 
catalytic links among all partners. These linkages, super- 
imposed on the individual replication cycles of the 
subunits, must form a closed loop, in order to stabilize the 
ensemble via mutual control of all population variables. 
Independent competitors, which under certain spatial 
conditions and for limited time spans may coexist in 
"niches', as well as catalytic chains or branched networks 

* Artificial dynamic systems that are based on technical devices to 
introduce catalytic coupling terms like, e.g., electric networks may 
not encounter these difficulties. 
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are devoid of self-organizing properties, typical of hyper- 
cycles. Mere coexistence is not sufficient to yield co- 
herent growth and evolution of all partners of an 
ensemble. In particular, the hypercycle is distinguished 
by the following properties: 
1. It provides stable and controlled coexistence of all 
species connected via the cyclic linkage. 
2. It allows for coherent growth of all its members. 
3. The hypereycle competes with any single replicative 
unit not belonging to the cycle, irrespective of whether 
that entity is independent, or part of a different hyper- 
cycle, or even linked to the particular cycle by 'parasitic 
coupling'. 
4. A hypercycle may enlarge or reduce its size, if this 
modification offers any selective advantage. 
5. Hypercycles do not easily link up in networks of higher 
orders. Two hypercycles of degree p need coupling terms 
of degree 2 p in order to stabilize each other. 
6. The internal linkages and cooperative properties of a 
hypercycle can evolve to optimal function. 'Phenotypic' 
advantages, i.e., those variations which are of direct 
advantage to the mutant, are immediately stabilized. On 
the other hand, 'genotypic' advantages, which favor a 
subsequent product and hence only indirectly the re- 
plicative unit in which the mutation occurred, require 
spatial separation for competitive fixation. 
7. Selection of a hypercycle is a 'once-for-ever' decision. 
In any common Darwinian system mutants offering a 
selective advantage can easily grow up and become 
established. Their growth properties are independent of 
the population size. For hypercyeles, selective advan- 
tages are always functions of population numbers, due to 
the inherently nonlinear properties of hypercycles. 
Therefore a hypercycle, once established, can not easily 
be replaced by any newcomer, since new species always 
emerge as one copy (or a few). 
All these properties make hypercycles a unique class of 
self-organizing chemical networks. This in itself justifies 
a more formal inspection of their properties-which has 
been the object of this Part B. Simple representatives of 
this class can be met in nature, as was shown in Part A. 
This type of functional organization may well be widely 
distributed and play some role in neural networks or in 
social systems. On the other hand, we do not wish to treat 
hypercycles as a fetish. Their role in molecular self- 
organization is limited. They permit an integration of 
information, as was required in the origin of translation. 

However, the hypercycle may have disappeared as soon 
as an enzymic machinery with high reproduction fidelity 
was available, to individualize the integrated system in 
the form of the living cell. Individualized replicative 
systems have a much higher potential for further 
diversification and differentiation. 
There are many forms of hypercyclic organization rang- 
ing from straightforward second-order coupling to the 
nth order compound hypercycle in which cooperative 
action of all members is required for each reaction step. 
While we do not know of any form of organization simpler 
than a second-order hypercycle that could initiate a 
translation apparatus, we are well aware of the com- 
plexity of even this 'simplest possible' system. It will 
therefore be our task to show in Part C that realistic 
hypercycles indeed can emerge from simpler precursors 
present in sufficient abundance under primordial 
conditions. 
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