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The proposed mechanism is based on a generative princi-
ple that allows in a straightforward manner to check whether
an interaction will lead to a stable pattern or not (Gierer and
Meinhardt, 1972; Gierer, 1981). Our mostly used activator-
inhibitor equation
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is only one example. The crucial condition is that the system
is locally unstable but globally stable. If a and h changes
according to the equations
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and h equilibrates rapidly over a large area by diffusion or
convection, h can be approximated as a function of the con-
centration of a averaged over a region from which the in-
hibitor is derived. The change of the activator concentration
can then be written as function of the local concentration of
a and the spatially averaged concentration ā:
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This may have a uniform steady state solution at a0 = ā
at which ∂a/∂t = 0. Patterns are formed if a slight local
increase over this steady state concentration grows further,
i.e. if (
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The inhibitor will lead to a globally stable pattern if(
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This principle now allows to derive a general criterion for
the power laws in pattern-forming interactions, assuming the
decay of substances proceeds in the normal (linear) way:
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The condition given in equations 2d and 2e is satisfied if
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The second term states that the autocatalysis has to be non-
linear ( k > 1 ) to overcome the normal decay that is propor-
tional to the activator concentration. The first term denotes
that effects of the inhibitory components have to be stronger
than those of the activating components to make the system
globally stable. In our standard equation we used k = 2,
l = 1, m = 2 and n = 0, which clearly satisfies this condi-
tion. Another example would be that the inhibitor acts on the
activation production in a nonlinear way. In this case, the in-
hibitor could be a decay product of the activator (conversion
model)
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The inhibitor need not to slow down the activator production.
An alternative possibility is that it accelerates the activator
destruction.
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Such an enhanced degradation is assumed in the interaction
proposed by Turing (1952). One problem of such an inter-
action is that with increasing peak hight, the half life of the
activator becomes shorter and shorter. If it becomes shorter
than the half life of the inhibitor, the system tends to oscillate.

The antagonistic effect can also result from the depletion
of a substrate or co-factor s(x) which is derived from a larger
surrounding and which is consumed during the autocatalytic
activator production.
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This reaction has similarities with the so-called Brusselator
reaction (Prigogine and Lefever, 1968) but is somewhat sim-
pler.

Depletion mechanisms differ in some properties from di-
rect activator-inhibitor mechanisms. The activator produc-
tion reaches an upper limit when the substrate concentration
drops to a low level. Such saturation leads to broader peaks
that can more easily shift and that can split in growing fields.

Pattern formation does not require a molecule with direct
autocatalytic regulation. The autocatalysis can be a prop-
erty of the system as a whole. In the interaction described
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in Eq. 7a-c, two substances, a and c, mutually repress each
other. Such an inhibition of an inhibition is in fact equivalent
to a self-enhancement since a small increase of a above an
equilibrium leads to a stronger repression of the c-production
by a. This, in turn, leads to a further increase of a, in the
same way as if a would be autocatalytic. If a has won the
a − c competition in a particular region, c must win in the
surroundings. A possible realization would be that the a
molecules control the production of h which, in turn, ei-
ther inhibits the a or promotes c production. These modes
are equivalent since in competing systems a self-limitation is
equivalent with a support of the competitor. An example is
given in Eq. 7a-c in which h, a decay product of a, under-
mines the c-inhibition by a:
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The restriction of the self-amplification may not proceed
by a long-ranging self-inhibition but by the activation of a
second state that locally excludes the first (Meinhardt and
Gierer, 1980). This type of interaction is important for seg-
mentation. The mutual activation of engrailed and wingless
by diffusible components is of this type. In this case there
is not an activated and a non-activated region. Only regions
with different activations exist. Due to the symmetry of the
system, the region in which the one or the other activation
occurs can have the same extension. Stripe-like patterns are
preferred. This is in contrast to sharp activator maxima sur-
rounded by large non-activated region generated by a direct
activator-inhibitor interaction. A possible interaction is given
in Eq. 8:
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A simple calculation provides some intuition for the con-
dition for local instability and global stability

For sake of simplicity let us first assume in Eq. 1 all con-
stants scaled as to 1. In a first step we take the inhibitor con-
centration as constant and we disregard diffusion. Equation
1a would read:

da
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The activator has a steady state (da/dt = 0) at a = 1. How-
ever, this steady state is unstable since for any concentration
of a larger than 1, a2 − a will be positive and the concen-
tration of a will further increase and vice versa. The reason
for this instability lies in the over-exponential autocatalytic
production in conjunction with a normal exponential decay.

Now let us include in a second step the change of the
inhibitor concentration. Equation 1b would read:

dh
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which has a steady state at h = a2.
If we assume that the h equilibrates rapidly in response to

a changed activator concentration, we can express the change
of activator concentration as function of the activator concen-
tration alone:
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Thus, if we include the action of the inhibitor, we also obtain
a steady state at a = 1. This, however, is stable since if a
is larger than 1, 1 − a is negative and the concentration will
return to the steady state at a = 1.

To see why an interaction according to (1a,b) can gen-
erate a pattern we now include in a third step the principle
of lateral inhibition, namely the effect of diffusion or other
forms of spatial spreading of the inhibitory effect. The in-
hibitor is assumed to diffuse much faster and to have a wider
range than the activator. Let us assume an array of cells; all
cells are at the steady state concentrations of a and h, ex-
cept one cell which should have a slightly increased activator
concentration. It will produce also more of the inhibitor but
since the inhibitor diffuses rapidly into the surroundings, the
inhibitor can be regarded in first approximation as constant.
It is the average activator concentration that is decisive for
the inhibitor production. As mentioned, if the inhibitor re-
mains constant, any deviation from the activator steady state
will grow further, i.e., the steady state is unstable. However,
after a substantial increase of the activator maximum, the in-
hibitor concentration can no longer be regarded as constant.
As shown above, the action of the inhibitor leads to the sta-
bilization of the autocatalysis. A new stable patterned steady
state will be reached. Thus, the formation of a stable pattern
depends on a local instability and a global stability.
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