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HE mutation load has been defined as the proportion by which the population 
fitness, or any other attribute of interest, is altered by recurrent mutation 

(MORTON, CROW, and MULLER 1956; CROW 1958). HALDANE (1937) and 
MULLER (1950) had earlier shown that this load is largely independent of the 
harmfulness of the mutant. As long as the selective disadvantage of the mutant 
is of a larger order of magnitude than the mutation rate and the heterozygote 
fitness is not out of the range of that of the homozygotes, the load (measured in 
terms of fitness) is equal to the mutation rate for a recessive mutant and approxi- 
mately twice the mutation rate for a dominant mutant. A detailed calculation of 
the value for various degrees of dominance has been given by KIMURA (1 961 ) . 

In all these studies it has been assumed that the population is so large and the 
conditions so stable that the frequency of a mutant gene is exactly determined 
by the mutation rates, dominance, and selection coefficients, with no random 
fluctuation. However, actual populations are finite and also there are departures 
from equilibrium conditions because of variations in the various determining 
factors. Our purpose is to investigate the effect of random drift caused by a finite 
population number. 

It would be expected that the load would increase in a small population because 
the gene frequencies would drift away from the equilibrium values. This was 
confirmed by our mathematical investigations, but two somewhat unexpected 
results emerged. One is that, for a given population size, a mildly deleterious 
mutant may create a considerably larger load than a more deleterious one. The 
second is that, under some circumstances, a finite population may have a smaller 
load than an infinite one. 

MATHEMATICAL METHODS 

We consider the following model, where A’ may be regarded as a single mutant 
allele or a class of mutant alleles with collective frequency z. Random mating is 
assumed within a finite population of effective size N .  The average fitness, W ,  
of each genotype is expressed as a fraction of the fitness of AA. 
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Genotype: A A  AA' A'A' 
Frequency: (1 -x)Z 22(1 -x) x' 
Average fitness, W :  1 1 - h ~  l - s  
Mutation rate (forward), A + A' = U 

Mutation rate (reverse), A' + A = U 

Various degrees of dominance are included by varying h; when h = 0, the 
mutant gene is recessive, and when h = 1/2, there is no dominance. The proba- 
bility distribution of x is given by WRIGHT'S (1937) basic equation 

and the mutation load of a population with mutant gene frequency x is 

- 
L = l - W = 2 s h z ( l - x )  +sx' ( 3 )  

where s > 0 and h 2 0. (To avoid possible misunderstanding (see LI 1963) it 
should be emphasized that the fitnesses assigned to the various genotypes are 
relative, not absolute. More precisely, L = (W,,,, - W)/W,,, where W,,, is 
the fitness of the most fit genotype. in this case AA.  Since the fitnesses are rela- 
tive, W,, is assigned the value 1 for algebraic convenience.) 

The mean value of the contribution of this locus to the mutation load is then 
given by 

- 

The numerical evaluation of this integral causes some difficulties. For the case, 
h = s, the integrals can be expressed in terms of the confluent hypergeometric 
function if the fitness is measured in Malthusian parameters (see APPENDIX). 

In this and other cases, numerical integration by quadrature was mainly used. 
In some cases the integrals were replaced by summations based on a discrete 
model. These procedures are described in an appendix for the case of genic selec- 
tion. Several cross checks were made by computing the same value in alternate 
ways. In  some special cases the integrals can be expressed by elementary func- 
tions, and these also serve as checks on the numerical integration of more complex 
cases: (1) The case of a lethal gene without dominance ( h  = s, s = 1) can be 
expressed directly in terms of Beta and Gamma functions; (2) The case of a 
recessive lethal can also be expressed with Gamma functions by the transfor- 
mation, y = x'; (3) The special cases 4Nu = 4Nu = 1, h = 1/2, and 4Nu = 2, 
4Nu = 1, h = 0 can be integrated directly. 
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For small values of Ns (2Ns < 5 )  the following approximation is useful: 

At the other extreme, when Ns becomes very large, the mutation load is given 
approximately by U when h = 0 and by 2u when h = i /z .  For other values of h, 

E = U ( I  - e + , / e ( 2  + e ) ) ,  

e = sh2/2u( I - eh),  0 < h I 0.5. 

RESULTS 

Numerical results with no dominance and complete dominance: Some approxi- 
mate numerical values are given in graphical form in Figure 1. We take as a 
typical value of the forward mutation rate, U = Reverse mutation is usually 
a much slower process, so we have taken U = Figure 1 gives the average 
mutation load, as a function of the effective population number, N. The lines 
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FIGURE 1.-The mutation load (ordinate) as a function of the effective population number 
(abscisss) for various values of the selection coefficient, s, and dominance, h. The ordinate is on a 
logarithmic scale; the abscissa is on  a scale proportional to the square root. The forward mutation 
rate, U, is 1 0 - 5 ;  the reverse rate U, is 10-6. 
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correspond to selection coefficients, s = 0.1, .03, .01, ,003, and .001, and two levels 
of dominance, h 

When the population is very small the mutation load is determined mainly by 
the selection coefficient s and by the ratio of the forward and backward mutation 
rates, U / U ,  as can be seen from equation ( 5 ) .  The degree of dominance is irrele- 
vant. This is reasonable, for in very small populations the mutant gene tends to 
be either fixed or absent, so there are few heterozygotes. 

In a very large population the HALIL~NE (1937) principle applies and the load 
is equal to the mutation rate for  a recessive mutant and equal to approximately 
twice the mutation rate for a dominant mutant as long as s is considerably larger 
than U .  A mutant that is partially dominant is more like a dominant than a reces- 
sive in this respect. For example, equation 6 shows that even with only 5 percent 
dominance (s = .01, h = .05) the load is 1.78 U ,  much closer to 2u than to U .  The 
rate of reverse mutation, U ,  is unimportant. 

Another point of interest that appears in Figure 1 is the very slow approach 
to the large population value for a recessive mutant. As first shown by WRIGHT 
(1937) and recently emphasized by ROBERTSON (1 962), even a rather large popu- 
lation may be far from equilibrium for the frequency of a recessive mutant. This 
is reflected in Figure 1. For example, when s = .O1 and N = 3500 the average 
mutation load is 1.1 1 U ,  11 percent in excess of the value in an equilibrium popu- 
lation. On the other hand when h = .5, the corresponding departure from large 
population equilibrium value is reached in a population of about 500. 

The most important feature that is revealed by Figure 1 is that in many popu- 
lations a mutant with a small selective disadvantage causes a greater mutational 
load than a mutant with a greater harmful effect. As can be seen from Figure 1, 
in a population larger than about 250 a mutant with s = .001 has a larger load 
than one with s = .01; for example, when N = 900 and h == 0, the load is approxi- 
mately 50 times as large fors = .001 as fors = .01. 

This means that, if there are loci where s is in the general region of 1 0-3 o r  1 O-4. 
even a population with an effective number of several thousand may have gene 
frequencies far from the equilibrium values for an infinite population. This could 
create an appreciable genetic load. For example, in a population of effective size 
1000 if there were 1000 loci producing mutants with s = .001, the mutation load 
would be roughly one half. This is equivalent to 25,000 loci with U = 10-5 in an 
infinite population. 

Partial dominance: It is likely that a great many mutants are nearly, but not 
completely, recessive. For example, the experimental value of h for newly in- 
duced lethal mutations in Drosophila ic about .05. Figure 2 shows the curves for 
h = 0, .05, and .5 when s = .01. The figure shows what was emphasized earlier- 
that in a large population a mutant that is nearly recessive produces a load more 
similar to that of a dominant than of a fully recessive mutant. 

The most interesting part of the curve is in the region around N = 1000. Here 
there is the paradox that a finite population has a smaller load than an infinite 
population, which would seem to imply that a random process produces a higher 
average fitness than a deterministic one. The explanation lies in the different load 

.5 (no dominance) and h = 0 (recessive mutant). 
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FIGURE %-The mutation load (ordinate) as a function of the effective population number 
(abscissa) for various levels of dominance, h = 0 (recessive mutant), h = .05, and h = .5 (no 
dominance). The selection coefficient, s, is .01 and the forward and reverse mutation rates are 
each equal to 10-5 .  

produced by dominant and recessive factors. Heterozygous selection accounts for 
one gene elimination per genetic death; selection against homozygotes produces 
two gene eliminations per genetic death. In this case, with a mutant that is nearly 
recessive, the curve is more like that of il recessive for N < 1000, but then changes 
and becomes more like a dominant. This is because in a small population the gene 
is usually absent or fixed, in which case most of the mutant expression is in 
homozygotes and eliminations are as for a recessive mutant. With larger popu- 
lations a large fraction have the mutant in intermediate frequencies so that it 
occurs more often in heterozygotes, and thus the small heterozygous effects be- 
come more important than the larger effects in the much rarer homozygotes. 

In general, the mutation load is never less than the mutation rate (except for 
loci where the gene frequencies are maintained by balanced selective forces). In 
a large population it will usually be between one and two times the mutation 
rate, depending on the dominance. In some cases, probably rare, such as when 
the heterozygote is more deleterious than either homozygote, the load may be 
more than twice the mutation rate (KIMURA 1961). However, in a finite popula- 
tion the load may be many times the mutation rate, approaching the value of 
the selection coefficient s as a limit in small populations where the rate of reverse 
mutation is negligible. 

The selection coefficient that maximizes the mutation load: We have shown in 
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the previous section that when two mutants having different selection coefficients 
are compared, there is a wide range of values of the effective population number 
where the gene with the smaller selective disadvantage produces the larger aver- 
age load. In other words, individually less deleterious mutations cause more harm 
to the population in the long run. This result is understood if we note that the 
smaller the effect of a gene, the more its frequency is determined by random 
drift. The milder gene may be carried to a high frequency by random drift and 
thereby cause a larger effect than a more deleterious gene whose frequency is 
kept very low by selection. 

For a given population size, there must therefore be a value of s which maxi- 
mizes the average mutation load, E. This may be obtained from equation (5).  
Letting X = 2Ns, we obtain from (5) 

X 2 N z  = (7) 

U 

If U = lOu, as in our previous examples, the value of X which maximizes 2NE 
(and therefore E )  is approximately X = 2.157, for which 2Nz,,, = 1.157. For 
a population of size N = 200, the most damaging mutation is one with s = .0054, 
for which zmLur = .0029. For N = 2000, ihe mutant creating the largest mutational 
load would have s = .00054. 

Multiple loci: Thus it would seem that slightly deleterious mutations of a type 
which may be very important for evolution may be very damaging to a small 
population when all the relevant loci are taken into account. If E ,  is the mutation 
load at the ith locus, then the total fitness relative to a population with mutation 
rate zero would be 

where the summation is over all relevant loci. The loci are assumed to be inde- 
pendent in their effect. 

It is convenient to measure the mutation load in Malthusian parameters 
(FISHER 1930,1958). In this case the total mutation load is 

For example, for N = 200 and s = .0054, if there are 1000 such loci ET = 1000 x 
.0029 = 2.9 and the relative fitness is e-2 'j = 0.055, a reduction of almost 95 per- 
cent. With 100 loci LT = .29 and e- L9 = .75. 

Interpopulation selection: The advantage of measuring the load by - log WT 
rather than by 1 - WT is that the total load becomes the sum of its components, 
rather than a complicated product expression. Since the L,'s are random variables, 
L T  will be distributed normally by the central limit theorem provided the number 
of loci is large. The mean and variance of L, will be 

W , = n  (l-LL,)-e-'Lz (8) 

L,  = - log WT = E L &  (9) 

E T  zz,, VT = zv, . (10) 
In a large group of populations having the same size and genetic parameters 

U ,  U ,  s, and h, Lr is distributed approximately normally with mean and variance 
given by ( 10). Since the relative selective value of a population having a partic- 
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ular value of total mutation load y is e-g, the expected value of this quantity over 
all the populations is 

Thus, the average fitness of a series of populations is a little greater (by a factor 
of el'dz) than would be obtained by aveiaging the loads and computing the fitness 
from these. 

The variance of the mutation load has an important bearing on the problem 
of intergroup selection. Table 1 gives the mutation load and its variance for a 
few values of s, h, and N .  

As a numerical illustration, consider a group of 40 populations, each with 
1000 individuals. Assume that there are 100 independent gene loci, each giving 
rise to mutations at rate U = lob5, with reverse mutation Y = with s = .001, 
and no dominance ( h  = 1/2). From Table 1, = 5.9 x I O 4  and V = 2.4 x lo-' 
for each locus; and for 100 loci E ,  = .059, V, = 2.4 x and the standard 
deviation of L, is .0049. The best of the 40 populations would be expected to 
deviate about two standard deviations from the mean, hence would have an ex- 
pected load of .059 - 2(.0049) = .049. This is to be compared to a load of 100 X 
2u = .002 for a single population of 40,000. Even if the most fit population re- 
placed all the others it would still come nowhere near to raising the fitness to 
that of a single panmictic population. 

This means that if there are a number of independent loci subject to random 
drift, interpopulation selection is not very effective in raising the average fitness. 
Migration between the populations would have very little effect unless it were 

TABLE 1 

Mean (L) and variance (V,) of the mutation Load in a population of effectiue number N 

S N L V' 

.001 .5 1 0 0  8.9 x 10-8 9.7 x 10-8 
1 000 5.9 x 10-4 2.4 x 10-7 
cc 2.0 x 10-5 

,001 0 1 0 0  8.9 x IG-4 9.7 x 10-8 
1000 5.8 x 10-4 2.4 x 10-7 

00 1.0 x 10-5 
.01 .5 4.0 8.2 x 10-3 1.5 x 10-5 

WO 5.6 x 10-5 3.7 x 10-7 
00 2.0 x 10-5 

.01 0 41) 8.2 x 10-3 1.5 x 10-5 
400 4.8 x 10-5 3.5 x 10-6 
00 1.0 x 10-5 

h 

~ ~~~~~~~~~~~ 

The forward mutation rate, U, is IO-' and the reverse mutatlon rate one tenth as large Dommance is measured by h, 
and s 1s the selectlie bsadvantage of the mutant homozygote 
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at a high enough rate to convert the population into almost the equivalent of a 
single randomly mating unit. As WRIGHT has emphasized, the absolute amount 
of migration required for this may be quite small. 

WRIGHT (1931 and later) has emphasized the idea that a subdivided popula- 
tion with local random differentiation, a small amount of migration, and inter- 
group selection has a favorable structure for breaking evolutionary stalemates 
and for creative evolution. Our analysis does not negate this possibility, but it 
does show that such a population structure pays a substantial price in reduced 
fitness. Any evolutionary advantage of such a system would have to overcome 
the initial disadvantage of having a considerably lower fitness than a large pan- 
mictic population. 

SUMMARY 

In a small population, the gene frequencies are subject to random fluctuations 
and the mutation load becomes a random variable. The distribution of gene fre- 
quencies under the influence of mutation and selection are known so the mean 
and variance of the mutation load can be computed. 

In small populations, the load is considerably larger than in a large population. 
For a wide range of population sizes, a mutant that is slightly harmful is more 
damaging to the fitness of the population than a mutant with a much greater 
harmful effect. Intergroup selection is ineffective in reducing this load. 

APPENDIX:  NUMERICAL METHODS USED TO EVALUATE THE MEAN A N D  THE 

VARIANCE O F  THE MUTATIONAL LOAD WITH GENIC SELECTION 

MOTOO KIMURA 

1. Expression of the integrals in terms of the confluent hypergeometric func- 
tion: If we denote by s/2 the selective disadvantage of A' over its wild-type allele 
A measured in Malthusian parameters, then the probability distribution of the 
frequency x of A' is given by 

(A.l)  +(x) = CczASx x ." (1 -x)-' 

where U is the forward mutation rate ( A  -+ A') and U is the reierse mutation 
rate (A' -+ A ) .  Note that if s is small (1 - sx) 2 v  = e-z'"s with good approxima- 
tion and (A.l)  is equivalent to equation (2) of the main text. We will denote 
by P ( x )  the right side of ( A . l )  with C omitted, i.e. 

(A.2) p ( x )  = , q L v s X  x 41111-1 (1 - x)a'-l. 

The average mutational load with respect to this locus is 

(A.3) z = s  oJ1xP(x)dx/,JIP(x)dx. 

This can be expressed as follows: 

- su ,F,(4Nu + 1, 4Nu + 4Nu + 1, - 2Ns)  (A.4) L=- . 
U + U ,F, (4Nu.  NU f  NU, ~ 2Ns) , 
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where ,F, denotes the confluent hypergeome’xic functioii defined by 
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In the present case, z = - 2Ns and the above series was used to calculate r f o r  Ns 
up to 10, above which an asymptotic formula for Iz/ -+ 00 was used to calculate 
the lFl’s and therefore E.  

Similar expressions may be obtained for E and the variance of the mutational 
load was calculated from 

(A.6) VL =E -E’.  

11. Numerical integration by quadrature: Since for a small population number, 
the value of P ( x )  may become +CO both at x = 0 and 1, caution is necessary in 
applying the method of quadrature in order to compute the values of integrals 
in (A.3). However, if we define function Q ( x )  by 

Q ( x )  = P ( z )  - za-l - ez(l  - x)B-l, 

where a = 4Nu, /3 = ~ N v ,  z = - 2Ns and P ( x )  being given by (A.2), then Q(z) 
is always finite over the entire range of integration. Here we assign values - e’ 
and - 1 respectively to Q (0) and Q ( 1 ) in computation. Therefore the ordinary 
method of quadrature is applicable to compute the value of 

Simpson’s method was used in the computation. From this value, the integral of 
P (5) may be computed by the relation 

A similar method was used to compute the value of 

o s 1  z P  (x) dx. 

111. Replacement of integrals by summation based on a discrete gene frequency 
model: In  an actual population of N diploid individuals, gene frequency x takes 

on the discrete values, 0, - , . . . . , 1 - -, 1. 1 1 
2N 2N 

If we denote by f L  the probability that z = i/(2N), then +(x)dx gives a good 
approximation to f i  if  we substitute 1/(2N) for dx. This approximation is valid 
for unfixed classes, i.e. for i = 1 ,  2, . . . , 2N - 1 .  The probabilities of terminal 
classes may be obtained from 
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1 1 1  
f L l  =;Pi-)- 2N 2N 

1 1 1  I' - P(1--)-  
2 N  - T 2N 2N 

where a = 4Nu and /3 = 4Nu (cf. WRIGHT 1931). 
Therefore, (A.3) may be replaced by 

i i 1 1 
2N 2N P 2N 

2A--l 

S I  z (-)P(-) + - P ( l  -->I 

-P(-) + z P(-) + - P ( l - - )  

1 = 1  

1 1 
2: 

E PAT-1 1 1  
a 2N 2N P 2N 

1 =I 

where P ( x )  is given by (A .2 ) .  A similar expression can be obtained readily for 
L'from which V L  is obtained by (A.6) .  

Some numerical examples showing the agreement of the three methods are 
given in Table 2. 

TABLE 2 

Comparison of the mutation load by three methods of calculation, for s=.O2, h=.5, u = v = I O - ~  
~~ 

IV Method I Method I1 Method 111 

10 8.Q278 x IO-d 8.0878 x 8.2203 x 10-3 
100 38741 X 3 8738 x IO-+ 4.0167 x IO-* 

1000 2 0506 x 20281 x 2.0273 x 10-5 
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