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ROBABILITY of gene fixation, that is to say, the probability by which a mu- 
Ptant allele becomes eventually established in a population is a subject of con- 
siderable interest both in population and evolutionary genetics. 

In his pioneering work, HALDANE (1927) showed that in an infinite popula- 
tion an individual mutant gene having selective advantage s can reach fixation 
with the probability of about 2s. Later, more general results were obtained by 
KIMURA (1957) for finite populations based on diffusion models (see also KIMURA 
1964). His formulae were used by ROBERTSON (1960) to develop a theory of limits 
in artificial selection. A still more general but quite simple formula for the prob- 
ability of fixation was also obtained by &MUM (1962) as a function of the mean 
(Mao) and the variance (V,,) of the rate of change in gene frequency per genera- 
tion. The formula is quite general, and as far as a single locus with a pair of alleles 
is concerned, it can cope with any degree of dominance and also random fluctu- 
ation in selection intensity. However, there are still restrictions in using the 
formula, the most serious of which is that the process of change in mutant gene 
frequency must be time homogeneous. In other words, the selection coefficients 
of mutant homo- and heterozygotes have to remain constant with time. 

When we consider the fate of a new mutant (including chromosome mutant) 
in natural populations, there are numerous situations for which time nonhomo- 
geneity has to be taken into account because of changing environment as well as 
alteration of genetic background with time. For example, consider the fate of a 
chromosome with a new inversion. If it happens to have a good combination of 
genes at the beginning, it will spread in the population reaching fixation or  lead- 
ing to inversion polymorphism. The fitness of the inverted chromosome segment 
in such a process can best be expressed by the exponential function of time, since 
deleterious mutants will accumulate in the inverted segment with time as shown 
by MUKAI ( 1964). This may also apply to a mutant gene that is itself neutral but 
happens to be included in a chromosome segment which does not contain dele- 
terious genes. It is also possible that a mutant gene which is originally advan- 
tageous gradually loses its advantage due to deterioration of environment. 

The fixation probability in such a time nonhomogeneous process was investi- 
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gated by OHTA and KOJIMA (1968) and also by POLLAK (1966). They used the 
method of branching process that was applicable to an infinite population. HOW- 
ever, in an infinite population, the probability of fixation of a mutant turns out 
to be zero if the selective advantage decreases with time and if its sum over 
infinite time converges, however great its initial advantage may be. Such a 
theoretical conclusion is unrealistic and cannot be applied to the treatment of 
such phenomena as the establishment of a new inversion in natural populations. 

In the present paper, we will present a new theory based on diffusion models 
which enables us to calculate the probability of fixation of a mutant in a finite 
population when its selective advantage decreases at a constant rate with time. In 
other words, we will elaborate the case of exponentially decreasing selective ad- 
vantage. Actually, the theory can be extended to cover more general cases in which 
selective advantage is a function of the exponential function of time. 

The present treatment is essentially an approximation which is valid when the 
initial frequency of the mutant is low. Therefore, in order to check the accuracy 
of the analytical treatment. extensive computations were carried out using the 
method of multiplying transition probability matrices. We believe that this is the 
first time in the literature of population genetics theory that the probability of 
gene fixation in a finite population under nonhomogeneous time process was 
determined. 

BASIC THEORY 

Consider a particular moment of time (present generation) and let u(p,s)  be 
the probability of ultimate fixation of a mutant allele having the frequency p and 
the selective advantage s at that moment. Let g(p,p+[;T) be the probability 
density that the frequency changes from p to p+t during the succeeding short 
time interval of length T. We will assume that the selective advantage decreases 
at a constant rate k per unit time (per generation) so that the selective advantage 
becomes e-kT of the present value after T generations. 

Then we have 
U ( P P 1  = s g(p,p+f;7) U (p+f,se+) dt 7 (1) 

where the integral is over all possible values of t. This equation may be derived 
from the consideration that the probability of ultimate fixation starting from 
frequency p is equal to a sum total of the probabilities of cases in which the 
frequency changes from p to p4-t during the succeeding time interval of length 
T and then reaches fixation afterward. Note that in the integrand we have 
U ( p+[,se-kT), since the selective advantage after time T is se4T. 

If we expand u(p+~,se-CT)-u(p+t,s--skr) around (p,s)  in terms of [ and T, 
equation ( 1 ) becomes 

where U on the right-hand side stands for U (p , s )  . 
Neglecting higher order terms containing T [ ,  2, t3 etc., and noting that 
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(3) 

where 

and 
1 v (p7.1 = 7 s 6% (p,p+t;.) dt. 

Then, taking the limit T - J  0, and, substituting the mean ( M  ) and the 
variance (V,,) of the change of the mutant frequency per generation, respec- 
tively, for lim M ( ~ , T )  and lim V ( ~ , T ) ,  we obtain our basic diffusion equation 
equation 

S? 

7- 0 T+ 0 

Note that u(p,s) in this equation has a different meaning from a similar function 
u(p , t )  previously used for the time homogeneous case (KIMURA 1957, 1962, 
1964) where it denoted the probability of a mutant allele reaching fixation by 
the t-th generation, given that the process starts from t=O with initial frequency 
p .  On the other hand, u(p,s) in the above equation denotes the probability of 
ultimate fixation of a mutant having the initial frequency p and the initial selec- 
tive advantage s. 

In the following treatments, we shall assume that the “variance” effective num- 
ber of the population (KIMURA and CROW 1963) is Ne such that 

Also, we shall restrict our consideration to the case of semidominance in fitness 
so that 

at the start. With these expressions for V,, and M,,, equation (4) becomes 

Vap = p(l-p)/(2Ne). 

M,, = sp(1-p) 

In order to solve this equation, and especially, to obtain an approximate solu- 
tion which is valid when p is small, we try a solution of the form 

where y=y(s )  is a function of s but not of p .  This expression for u(p,s)  satisfies 
the necessary boundary conditions 

u(0.s) = O  and u(1.s) = 1, 
and also gives the exact solution for the time homogeneous case (k=O) by setting 
y ( s )  =s, since for this case we have 

(KIMURA 1957). 
u ( p , ~ )  = ( i -e-4~~sp)/( i -e-*~~~) 
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Let us now assume that the initial frequency p of the mutant allele is so low that 
I4Neyp I is much smaller than unity even if j 4Ney 1 may be large. 

For example, if the mutant allele is represented only once at the moment of 
its appearance in a population of actual size N ,  p=1/(2N) and 14Neypl = 
( 2 N e / N )  Iyj S (2Ne /N)  Is1 is much smaller than unity provided that Is( is small. 
So, the assumption is realistic if the initial frequency of the mutant is very low 
and its selective advantage is not very large. With this assumption, we have ap- 
proximately (neglecting small terms) 

au 1- ( 1 +4Ney) e-4Neg dy 
- 4Nep ( 1-e-4NeV) 2 7 G- 

au - 4 N e ~  
5p l-e-4Neu 
- _  

and 

Substituting these in equation ( 5 )  and also replacing p (  l-p) in the equation by 
p since p is very small by assumption, we obtain the following ordinary differ- 
ential equation for y ;  

Note that this equation does not contain p so that y can be determined as a func- 
tion of s only, in agreement with the assumption made in (6). 

Let S=4Nes, K=4Nek and Y=4Ney, then the above equation is expressed as 
dY - Y (S- Y) ( 
dS KS{ 1 - ( l+Y)e-y} 

This is a nonlinear first order differential equation and can be solved numeri- 
cally without much difficulty. Namely, for each given value of K ,  values of Y 
may be tabulated as a function of S. Then the probability of eventual fixation for 
a rare mutant allele may be given approximately by 

1 - e-YP Y 
1 -e-y 1 -e-y ) P  u(p) = ~ ff (- N (9) 

Numerical integration of (8) was performed by using the method of step-by- 

(10) 
step integration starting from the neighborhood of S=Y=O. Note that 

lim s+ 0 (Y/S) = .s-+ lim 0 (dY/dS) = 1/ (1 +K/2). 
The results of integration are presented in Table 1 and also in Figure 1. In the 
table, values of Y are tabulated as a function of K and S for K=0.1-10 and 
S=1-20. It may be seen from the table that as K gets large, the probability of 
fixation drops considerably. For example, if S=10 and p=O.l, the probability of 
fixation is 0.63 for K=O, while it reduces to 0.31 for K=5 and to 0.21 for K=10. 
Figure 1 illustrates the relationship between Y and S mainly for larger values of 
K and S. For still larger values of K and S, we may use the following formulae; 

(i) If S is much larger than K,  the approximate solution of (8) is 
Y = S - K .  (11) 
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TABLE 1 

Values of Y for various combinations of values of S and K, where Y=4Ney, S=4N,s and K=4Nek 

2\ 0.1 

1 0.885 
2 1.894 
3 2.897 
4 3.897 
5 4.898 
6 5.898 
7 6.899 
8 7.899 
9 8.899 

10 9.899 
11 10.899 
12 11.899 
13 12.899 
14 13.900 
15 14.900 
16 15.900 
17 16.900 
18 17.900 

19 18.900 
20 19.900 

1 

0.699 
1.417 
2.181 
3.037 
3.962 
4.865 
5.839 
6.835 
7.848 
8.861 
9.872 
10.881 
11.887 
12.890 
13.892 
14.891 
15.890 
16.887 

17.885 
18.883 

2 3 

0.507 0.410 
1.054 0.838 
1.648 1.307 
2.286 1.798 
2.976 2.338 
3.725 2.900 
4.536 3.548 
5.408 4.214 
6.334 4.939 
7.307 5.754 
8.314 6.625 
9.345 7.548 
10.390 8.516 
11.441 9.520 
12.493 10.552 
13.543 11.604 
14.589 12.667 
15.631 13.737 

16.669 14.810 
17.703 15.881 

4 5 6 7 8 9 10 

0.343 
0.697 
1.068 
1.480 
1.898 

2.367 
2.851 
3.394 
3.952 
4.598 
5.270 

5.982 
6.787 
7.643 
8.548 
9.500 

10.486 

11.512 
12.560 
13.630 

0.292 0.255 
0.596 0.519 
0.916 0.795 
1.251 1.084 
1.606 1.386 
1.983 1.705 
2.384 2.042 
2.813 2.399 
3.275 2.779 
3.771 3.185 
4.308 3.619 
4.887 4.085 
5.512 4.585 
6.186 5.124 
6.912 5.704 
7.688 6.327 
8.514 6.993 

9.389 7.708 
10.312 8.468 
11.275 9.275 

0.226 0.203 0.184 0.169 
0.460 0.412 0.374 0.342 
0.703 0.629 0.570 0.521 
0.955 0.854 0.772 0.704 
1.219 1.087 0.981 0.894 
1.595 1.330 1.198 1.090 
1.784 1.583 1.423 1.292 
2.089 1.849 1.659 1.502 
2.410 2.127 1,903 1.821 
2.751 2.419 2.159 1.948 
3.113 2.728 2.427 2.185 
3.498 3.054 2.708 2.433 
3.908 3.400 3.005 2.692 
4.347 3.766 3.318 2.964 
4.817 4.155 3.648 3.249 
5.321 4.570 3.997 3.550 
5.860 5.013 4.369 3.867 

6.460 5.486 4.763 4.201 
7.054 5.989 5.181 4.656 
7.713 6.527 5.626 4.930 

FIGURE and 50. 
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Validity of this approximation may be evident in the lower left corner of Table 
1, particularly for S210 and KSl .  

(ii) On the other hand, if S is of the same order of magnitude as K or smaller, 
we have 

TI 

with good approximation. Actually, this formula is quite satisfactory for S up to 
about 2K. 

N U M E R I C A L  CHECK OF T H E  BASIC THEORY 

In order to check the validity of the foregoing treatments, the exact probability 
of fixation was computed based on the discrete model of generation time by mul- 
tiplying the transition probability matrices. The method is essentially the same 
as the one used by EWENS (1963) except that in the present case the transition 
matrix changes each generation since the selective advantage decreases with time. 

All the calculations were performed by using computer IBM 360 with “double 
precision.” 

In these calculations, a haploid population with 50 breeding individuals was 
assumed. The results are given in Table 2, where the probabilities of fixation 
computed by multiplying the probability matrices (P.M.) are listed together with 
those obtained by diffusion approximation formula (6) (D.A.) by setting 2N=50. 

The agreement between these two sets of values is sufficiently close to demon- 
strate the essential validity of the present theory based on diffusion models. 

DISCUSSION 

Although the present theory was developed originally to treat the case of ex- 
ponentially decreasing selective advantage, it can be extended to cover a more 
general case in which the selective advantage is a function of an exponentially 
decreasing term. 

In such a general case, the equation corresponding to (4) or (5) becomes 

where f ( . )  denotes a function such that f(se-’”) is the selective advantage of the 
mutant at the t-th generation. 

Then, assuming the same form of solution as (6), the differential equation 
corresponding to ( 7) becomes 

from which y may be solved as a function of s. With this y,  the probability of 
fixation may be obtained using formula (9), provided that the initial frequency 
p of the mutant is very low. In particular, if the mutant is represented only once 
at the moment of its appearance in a population consisting of N individuals, we 
may put p=1/(2N). If, in addition, 4N,y is sufficiently large so that e4Ney is 
negligibly small, equation (14) may be replaced by 
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TABLE 2 

The probability of fixation calculated b y  multiplying the transition probability matrices ( P . M . )  
and the probability obtained by  diffusion approximation (D.A.) 

S k Method 0=0.02 

0.16 0.0 

0.16 0.001 

0.16 0.01 

0.16 0.1 

0.08 0.0 

0.08 0.001 

0.08 0.01 

0.08 0.1 

0.04 0.0 

0.04 0.001 

0.04 0.01 

0.04 0.1 

P.M. 0.255 
D.A. 0.274 
P.M. 0.253 
D.A. 0.272 
P.M. 0.238 
D.A. 0.259 
P.M. 0.067 
D.A. 0.068 
P.M. 0.139 
D.A. 0.148 
P.M. 0.138 
D.A. 0.144 
P.M. 0.116 
D.A. 0.127 
P.M. 0.037 

D.A. 0.038 
P.M. 0.074 
D.A. 0.078 
P.M. 0.073 
D.A. 0.077 
P.M. 0.058 
D.A. 0.060 
P.M. 0.027 
D.A. 0.028 

p = O M  

0.443 
0.473 
0.4+1 
0.470 
0.41 8 
0.449 
0.127 
0.130 
0.259 
0.274 
0.256 
0.267 
0.218 
0.238 
0.073 

0.075 
0.143 
0.151 
0.140 
0.147 
0.112 
0.116 
0.053 
0.054 

p=0.06 

0.583 
0.617 
0.580 
0.615 
0.554 
0.592 
0.183 
0.191 
0.362 
0.382 
0.357 
0.368 
0.307 
0.336 
0.108 
0.111 
0.207 
0.21 7 
0.202 
0.212 
0.163 
0.169 
0.080 
0.082 

0.687 
0.722 
0.684 
0.719 
0.657 
0.696 
0.234 
0.248 

0.450 
0.473 
0.445 
0.462 
0.385 
0.422 
0.141 

0.145 
0.266 
0.279 
0.260 
0.270 
0.21 1 
0.220 
0.105 
0.108 

0.765 
0.798 
0.762 
0.796 
0.736 
0.774 
0.282 
0.299 
0.525 
0.551 
0.520 
0.546 
0.454 
0.494 
0.174 

0.179 
0.321 
0.336 
0.314 
0.330 
0.256 
0.267 
0.131 
0.134 

Calculations were performed assuming a population of 50 haploid individuals and taking 3 levels 
of s (0.16, 0.08 and 0.04), 4 levels of k and 5 levels of p .  

and the probability of eventual fixation U = U (  1 / 2 N )  may be given approximately 

(16) 
OHTA and KOJIMA (1968) investigated the ultimate survival probability of a 

new inversion assuming that its selective advantage decreases with time. They 
used the method of branching processes that is applicable to an infinitely large 
population, and they showed that this probability is zero unless the inversion has 
a unique advantage, permanently maintaining some selective superiority. 

They also worked out the ultimate survival probability for the case in which 
the selective advantage of the inversion at the t-th generation may be expressed 
in the form 

bY 
U = 2 ( N , / N )  y.  

cl.wkt 
l+se-kt ' f(se-kt) = co + 

where co and c1 are constants. Actually, they treated a more restricted case in 
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which co, c1 and k are given by c0=c/2, cl=nc/2, and k=c/2, where c is a positive 
constant and n is the number of loci influencing fitness. The ultimate survival 
probability they obtained was, in our notation, 

(18) 
where ro=s/( 1 +s) . 

We can now show that this satisfies our equation (15) in which f ( s )  is given 
by (1 7) : Assuming that the actual and the effective sizes of the population are 
equal (Ne=N) ,  we have u=2y from (16). But, from (18), du/ds=(u/cs) {c  -I 
ncs/ ( 1 +s) -U}, so that we have 

U = (n+l ) C l o / {  1 - ( 1-70) +I}, 

On the other hand, from (1 7), noting that in OHTA and KOJIMA’S case c0=c/2 
and c1 =nc/2, we have f ( s )  = (c/2) + (nc/2) s/ ( 1 +s) . In addition, k=c/2 in their 
case. Therefore, ( 19) agrees with (15), as was to be shown. 

It is reassuring that the previous result obtained by OHTA and KOJIMA (1968) 
by an entirely different method has now turned out to be a special case of the 
present treatment based on the diffusion models. 

Finally, we will consider briefly the fate of a new inversion which happens to 
contain an unusually small number of deleterious genes. Let us assume that at 
each locus within the inverted segment, the deleterious allele (a) produced by 
mutation lowers fitness by hs, in the heterozygote and s1 in the homozygote as 
compared with its normal allele ( A ) .  If the mutation rate from A to a is p and if n 
such loci are contained in the segment, then, assuming that the mutant alleles 
have enough dominance so that the selection against them is mainly through the 
heterozygous state, the selective advantage of the inverted segment at the t-th 
generation having initially no deleterious genes is approximately 

f(seAt) = npe-hslt 
(NEI, KOJIMA and SCHAFFER 1967). Thus the theory developed in the present 
paper can be applied to the evaluation of the probability of fixation by putting 
s=np and k=hs,. 

If the inversion covers 1,000 loci, then referring to CROW (1968), MUKAI 
(1964) and others, we may take np=0.01-0.05 and hs,=0.02-0.05. In this case, 
s and k are roughly equal. So we will consider the case s=k=1/50, assuming 
N,=N. In a very small population with effective size Ne=50, we obtain Y= 
4Ney=1 .48 corresponding to S=4Nes=4 and K=4Nek=4 in Table 1. Then from 
equation (9), taking p=1/(2N)=0.01, the probability of eventual fixation is U= 
0.019. In a population ten times as large (N;=500), S=K=40 and from Figure 1 
we get roughly Y=2.5. Taking p=1/(2N)=0.O0l7 this gives ~ ~ 2 . 6  X lP3. Note 
that the corresponding value of Y derived from formula (12) is approximately 
Y ~ 2 . 4 ,  in good agreement with the value obtained using Figure 1. In a still larger 
population of N,=5,000, we have S=K=400. These are outside the range covered 
by Figure 1 , but we can obtain the value of Y from formula (12), namely, Yx2.72. 
The probability of fixation of a single inversion turns out to be ~ ~ 2 . 7 2  X 
Note that at the limit of S=K-+w, the ultimate fixation of a single inversion in a 
very large population of size N ( = N e )  is e / ( 2 N )  or 1.36/N, as may be seen by 
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combining formulae (12) and (9). Since the corresponding probability is 1/(2N) 
for a completely neutral inversion, we may conclude that in a large population 
the fixation probability becomes only about 3 times as large by having selective 
advantage s which decreases at a rate s per generation (i.e., k=s) . If the rate of 
decrease is half as large (i.e., k=s/2), the fixation probability becomes about 7.5 
times as large as that for the case of complete neutrality. 

The above treatment of the fixation probability for a new inversion is but one 
application of the present theory. More generally, the theory may be used to ob- 
tain the fixation probability of a mutant in a finite population when the environ- 
mental condition or the genetic constitution changes with time, as long as the 
resulting change in selective advantage can be expressed as a continuous function 
of an exponentially decreasing term. 

SUMMARY 

A theory was developed which enables us, for the first time, to obtain the prob- 
ability of fixation of a mutant in a finite population when its selective advantage 
decreases at a constant rate with time. The theory is based on diffusion models 
and it can be extended to cover a more general case in which the selective ad- 
vantage can be expressed as a function of the exponential function of time. 

Let U ( p )  be the probability of ultimate fixation of a mutant allele with initial 
frequency p and having selective advantage sebkt at time t .  Then, assuming that p 
is small, the fixation probability in a population of effective size Ne is given 
approximately by 

where Y is the solution of the differential equation 
U ( P )  = {y/(l-e-y) >P, 

dY - Y(S-Y) (l-e-y) 
d s -  KS[l-(l+Y)e-p} ' 

in which S=4N,s and K=4iV,k. The numerical solution (Y) of this differential 
equation was tabulated in Table 1 and also given graphically in Figure 1. For 
larger values of S and K not covered by the graphs, the following approximation 
formulae were found useful to estimate Y: (i) if K<<S, we have YzS-K, while 
(ii) if SS2K, we have Y/( l-e-P) ze8/(K+z). 

In order to check the validity of the theory, an extensive computation was 
carried out by using the method of multiplying the transition probability matrices, 
and the result turned out to be satisfactory. 

Finally, as an application of the present theory, the probability of establishing 
a new inversion initially containing an exceptionally small number of deleterious 
genes was worked out. 
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