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A model for polynuckotide replication i+ presented and analyzed by means of perturbation theoF. Two basic assumprinns 
allow handfing of sequences up to a chain Iengrh of Y = SO explicitly: point muta&xxs are restricted to a two-digit model and 
individual sequences are subsumed into mutant classes. Perturbation theory is in exceknt agreement with the exact results for 
long enough sequences (P 5 20). 

1. Jntrmiuction 

Eigen IS] proposed a formal kinetic equation 
(eq. 1) which describes self-replication under the 
constraint of constant total population size: 

(1) 

By xi we denote the population number or con- 
centration of the self-replicating element Ii, i.e.. 
xi = [Ii]_ The total poputation size or total con- 
centration c =C,x, is kept constant by proper ad- 
justment of the constraint gr + = CiXj~o,jxi_ Char- 
acteristically, this constraint has been called ‘con- 
stant organization’. The relative values of diagonal 

* 

** 

Dedicated to the late Professor B-I_ lanes who was among 
the first to do rigorous marhematical analysis on the prob- 
lems described here. 
This paper is considered as part Ii of Mode1 Studies on 
RNA repkation. Part I is by Gassner and Schuster [X4]. 

+ All summations throughout this paper ram from 1 to PI tmkss 
specifkd differently: E, = X7_ 8 and X,., _, = Z!Z : -+Z’-, + I - 
respectively. 

(IV,:,) and off-diagonal (w,,, i +j) rates, as we shall 
see in detail in section 2. are related to the accu- 
racy of the replication process. The specific prop- 
erties of eq. 1 ate essentially based on the fact that 
it leads to exponential growth in the absence of 
constraints (9 = 0) and competitors (n = I). 

The non-linear differential equation, eq. I - the 
non-linearity is introduced by the definition of + 
at constant organization - shows a remarkable 
feature: it leads to selection of a defined ensemble 
of self-replicating elements above a certain accu- 
racy threshold. This ensemble of a master and its 
most frequent mutants is a so-called ‘quasi-species’ 
[9]_ Below this threshoId. however, no selection 
takes place and the frequencies of the individual 

elements are determined exclusively by their statis- 
tica weights. 

Rigorous mathematical analysis has been per- 
formed on eq- 1 [7,15,24,26]. In particular. it was 
shown that the non-linearity of eq. I can be re- 
moved by an appropriate transformation_ The ei- 

genvalue problem of the linear differential equa- 
tion obtained thereby may be solved approxi- 
mately by the conventional perturbation technique 
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of linear algebra (see section 2). 
The main, although not exclusive, field of appli- 

cation for eq. 1 is polynucleotide replication. 
Therefore, the formal treatment was encouraged 
enormously by the results of experimental work on 
template-directed RhA synthesis (for reviews, see 
refs. 12,1?,2? and 22; as well as refs. 3 and 20). 
These studies presented, among many other inter- 
esting aspects, experimental verifications of the 
predictions of the analysis of eq. 1: the concentra- 
tions of polynucleotides grow exponentially under 
proper conditions - at concentrations below en- 
zyme saturation - and the individual growth prop- 
erties are evaluated by selection_ 

A second series of studies was performed by 
Weissmann and co-workers [2.5,6] on the simple 
bacteriophage ($0. They were able to present ex- 
perimental proof for the existence of a mutant 
distribution in the naturally occurring phage popu- 
lations. This distribution tits perfectly into the 
concept of a quasi-species. Later on, nucleotide 
sequence heterogeneities were also found in Foot- 
and-mouth disease virus [4] and influenza virus 
populations [ 13,191. 

In this paper, we investigate the nature of the 
approximations used in the perturbational analysis 
of the linear differential equation mentioned above 
and show its validity for long polynucleotide se- 
quences by means of a properly chosen model. 
This model is based on experimental frequencies 
of mutations and seems to -be suitable also for 
other studies on polynucleotide replication in gen- 
eral. 

2. The origin of the problem 

In order to illustrate the application of per- 
turbation theory to eq_ 1 we have to specify the 
rates syij in more detail- Differing slightly from the 
original version 181. we treat diagonal and off-diag- 
onal rates by the same equation: 

m:, = 4,Qrt - D,%, (2) 

where Ai is the rate of polymer synthesis on the 
template Ii, i.e., the number of newly synthesized 
molecules per unit time and unit template con- 
centration, irrespective of whether they are correct 

copies or mutants. Bj is the rate of degradation of 
polymers Ij (by sji we denote the Kronecker sym- 
bol: aii = 1 if i-j and Sj, = 0 if i =j). The accu- 
racy of the replication process is described by the 
matrix Q = {&}. The elements of 0 are dimen- 
sionless and Qi, is the probability of obtaining 
molecule Ii through a replication of II_ Evidently, 
the diagonal elements Oji are identical with the 
quality factors p, of Eigen [8]_ The off-diagonal 
elements pij (i =j) are simply the probabilities of 
mutations. From the definition of probabilities 
follows immediately 

CQ*,=t (3) 
I 

(a synthesized copy is either correct or erroneous). 
Making use of eq. 3, we can rewrite the constraint 

9: 

We introduced an excess productivity Ez = A, - Dj 
of template 1; as well as its ensemble average: 
E = Xi Eixj/c. 

Without losing generality, we can restrict our- 
selves to the case c = Xx, = I, since the solution 
curves of eq. 1 do not depend on total concentra- 
tion c after transformation to internal cocrdinates: 
4, = xi/c flO]. Eq. I now is of the form 

Intuitively, eq. 5 describes a selection process Due 
to elimination of the less efficiently replicating 
polynucleotides - for these molecules ;+-z is 
negative - E increases monotonically in time until 
it reaches an optimum at the stationary state: 

lim E=Z opt = %m; H;nm = max(w;i; i = I.....n) (6) I-= 

This selection process may be disturbed by muta- 
tions in case the rvij values are large. As we shall 
see this intuition is essentially correct. We find 
selection if the mutation terms in eq. 5 are suffi- 
ciently small. Nevertheless, we summarize the 
rigorous analysis of eq. S first_ 

Following Thompson and McBride 1241 or Jones 
et al. [ 1.53, we may remove the non-linearity in eq. 
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4 by a time-dependent transformation of variables 

_r,{i)=exp{ -[&z)dr}z,(r) (71 

and are left with the linear equation for which we 
properly use vector notation (z is a column vector 
with the component z,, i = 1, _ _ _ , n): 

2 i ‘u’= (8) 

W= ( w,~) is the matrix of rates. This linear dif- 
ferential equation can be solved by standard 
numerical techniques (provided n is not too large)_ 
Solution curves are of the general form 

with 

OfJ = %,~(“-*),k=A(o) (9) 

The negative reciprocal time ccmstants h; are the 
eigenvalues of the matrix II’_ For the sake of 
simplicity, we consider them as being ordered A, > 
A,> . . . =-A,. Similarly, we may assume ii’, I > wzz 
> e.. =- aq,“_ Thus, A, is the largest eigenvalue and 
w’t, the largest diagonal element of matrix IV_ The 
coefficients u,~ build up the eigenvectors of W(V 
= <uii) and A = (A,i = XjSjj} is a diagonal matrix): 

wU=LiAorn=u-‘&Vu (10) 

The solution curves x,(t) can be obtained from 
known functions z,(t) by means of a Bernoulli 
equation (For further details, the reader is referred 
to refs. 15 and 24.) 

In the following we shall be interested in sta- 
tionary mutant distributions exclusively_ For this 
purpose, a knowledge of the functions z,(t) is 
sufficient. We notice that the problem formulated 
in internal coordinates is invariant under the 
transformation (eq. 6): 

I.(r)+&=& 
J J 

For the moment we assume A, > A, (we shall come 
back to the degenerate case A, = A, in section 3). 
In approaching the steady state, ali contributions 
in eq- 8 except those of the eigenvector ccrre- 
sponding to the largest eigenvalue (principal eigen- 

vector) will vanish: 

=,(/7 ~zr=P(hf) 

In internal coordinates we find 

z, - =a(f) a,1 
Y,~(~-*)GAo) 

r~%c-;o=cp,1= ~~U,,fU-‘)*~;*(O) (I?) 
I I 

Eq. 9 thus describes the selection process men- 
tioned above: out of a superposition of eigenvec- 
tars, that with the largest eigenvalue is selected. 
This eigenvector in our problem (W is a positive 
definite matrix) is characterized by only positive 
components, n,, > 0 [73_ 

The largest eigenvalue and the principal eigen- 
vector of W were determined by perturbation the- 
ory [24]. To this end. the matrix W is split into its 
diagonal and off-diagonal efements: 

The diagonal part W, is considered as the unper- 
turbed system, W’ is the perturbation_ 

The results are obtained at different orders of 
the off-diagonal elements u;,,j * i. For the sake of 
convenience, we present the sums of all contribu- 
tions up to a given order. e.g.. A(fJ = A’;’ -t- AA’:’ + 
AA(f), wherein Ax’: ) are the proper contributions of 
perturbation theory at order k. At zeroth order. 
off-diagonal eIements do not enter the compu- 
tation explicitly. Hence, we find [S]: 

x(p) = H’1 1 (134 

By means of eq. 6. we have We, = E at the steadv 2 
state, from which we derive 

go, = H’l@ -E_, 
E,---, 

=l_4t1-Q,d = Psr-ol’ 
E,--_, l--a;’ 

f 13b) 



Herein, the mean excess productivity of all se- 
quences except the master sequence I, is defined 

by 

(14) 

and the superiority of I, by 

‘41 
O’=D, 

(15) 

The evaluation of eq. 13b requires some care, since 
it is not self-evident how to apply it. The compu- 
tation of the ‘mean except the master’ excess pro- 
ductivity E__ , according to eq. 14 presupposes 
knowledge of the stationary mutant distribution 
(si-,; i=2.__.. ?I). Strictly speaking, these con- 
centrations are not accessible without making ex- 
plicit use of the off-diagonal elements w,,. There 
are ways to get out of this problem; we mention 
two alternatives: 

(1) In the phenomenological approach [S,9]. we 
consider the superiority u to be an empirical 
parameter which in principle can be determined 
experimentally through systematic studies on wild 
type and mutants. Examples are the work on 
Q&RNA [6] and a low molecular weight variant 
of it 1161. 

(2) Alternatively, we could make some assump- 
tions on the mutant distribution or ‘borrow’ the 
corresponding expression for the relative frequen- 
cies of mutants form the first-order results (see eq. 
16b). From these frequencies we obtain E_ , easily. 

In some of our test cases to be discussed in 
detail in the forthcoming sections we shall cir- 
cumvent this problem by assuming equal rate con- 
stants for all mutants: E2 = E3 = _ _ _ E, = E_ ,_ 

In first order we obtain no contribution to the 
eigenvaiue X,. The eigenvectors can now be ex- 
pressed in the form of ratios: 

x’;‘=~‘p’=W II (t6a) 

<~“=E~“*:i=Z.....n (16b) 

The relative concentration of the master sequence 
can be obtained from the conservation relation 

x,i; = 1 [Xl: 

i’,” = I %I 

n;, 
1+ c ____ 

xl- x ___ 
i-I H-1 1 - n;, 

,-I %‘I 1 - H;, 

Again we may introduce a mean except the master 
for the selective values w;, and find 

(16~) 

Eq. 16c is the first-order analogue of eq. 13b. Note 
that here the excess productivity is replaced by the 
selective values. 

In second order we obtain the following results: 

(17a) 

t ‘7b) 

The zeroth-order equation turned out to be partic- 
ularly useful: Using the condition 1’“‘~ 0, Eigen 
[8] was able to define an accuracy threshold below 
which a given sequence is inevitably lost during 
multiple replication. This error threshold was ap- 
plied to various replication processes like enzyme- 
free template-instructed RNA replication 195 The 
error limit provides an explanation for naturally 
occurring genome lengths. Despite the success 
mentioned above, we found it somewhat unsatis- 
factorily to rely on zeroth-order perturbation the- 
ory, particularly in the present case where rigorous 
numerical tests are not accessible for reasonably 
long sequences. The number of possible different 
sequences of chain Iengrh v equals 4”. an expres- 
sion which soon goes to ‘superastronomic’ num- 
bers with increasing Y_ In the following sections we 
shall analyse the validity of the perturbational 
approach by means of an appropriate model. 

3. An exactly solvable test case (n = 2) 

For the purpose of illustration we consider the 
exceedingly simple example of two sequences (n = 
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2). They can be understood as a master sequence 
and a mutant_ This case has the advantage that 
analytical expressions of the exact solutions are 
easily available_ From the two-dimensional eigen- 
value problem, we obtain (IV,, > w,,): 

and 

C = h. _ *1I:‘+ W.,l - 1 

Perturbation theory yields the following approxi- 
mations 

for the eigenvalue. We recognize that these expres- 
sions follow immediately from an expansion of the 
square root in the exact eigenvalue 

As expected the results of perturbation theory 
converge to the exact solution when the quotient 

“.r93/( tvi I - w2# approaches zero. 
For the eigenvector, first-order perturbation 

theory leads to the expression 

There is no second-order contribution to $, in this 
simple example. 

i 
‘\ 

‘\. 1; 

o! ‘. : - mlo! +Q 
0 0.5 1 - a 05 1 

Perturbation theory is not applicable to the case 
of equal or almost equal selective values, w,i and 
wZz_ In this case we obtain for ~,r = ~~~~ 

from the exact expressions. The two sequences 
thus are present in relative amounts Proportional 
to the square roots of the off-diagonal \& and 

- 
\i We, . The steady state of the system is determined 

by the mutation terms exclusively. In the case of 
equal selective values, the master sequence is re- 
placed by an ensemble of two or eventually more 
‘masters’. The mutant distribution belonging to 
such an ensemble can be obtained from perturba- 
tion theory of degenerate states [24]. 

Returning to the general case iv,, = ~‘2~. we 
consider concrete examples. For the sake of sim- 
plicity we assume the same quality factors for both 
sequences: Q, , = Qz2 = (2. This assumption is well 
justified in the case where both molecules are 
replicated by the same molecular machinery which 
is characterized by a given accuracy of replication. 
The matrix W, then, is of the form 

For a given set of rate constants A,, A,. D, and 
D2. we calculate eigenvalue and eigenvector as a 
function of Q. Often it is appropriate t3 assume 
equal rate constants of the decomposition process: 
D, = D2 = D_ A straightforward computation 

Fig. I. Largest eigenvalue (X,) and eigenvector (.$,) for the tu-odimensionat case (n = 2). We ~~exmr exact solutjons (- ) 
together with the results of zeroth-order (_.._.) and second-order f- - - - -) perturbation theory. Numerical ~aiue~ chosen are (A) A, = 4. 
A? - 1. D, - Dz = 0 and (B) A, = 6. A, = 3, D, = 2 and Dz = 1 in arbitrary reciprocat rime and concentration units. 



shows that the eigenvector is independent of D in 
this case. 

Graphs for two concrete numerical examples 
are shown in fig. 1. We observe the expected be- 
haviour of the approximative solutions when Q 
deviates gradually from 1. The zeroth-order ap- 
proximation diverges first from the exact solution. 
At a certain critical Q value, generally denoted by 
Qmin, the component .$$” of the zeroth-order ei- 
genvector vanishes. This indicates ultimate break- 
down of the zeroth-order approach. As we shall 
see later on Qmin is of great importance for long 
sequences where the zeroth-order approximation 
turns out to be very close to the exact solution, 
provided Q > Qmin_ 

The first- or second-order expressions are better 
approximations to the exact solutions and remain 
useful down to smaller values of Q. We note that 
.$‘!‘) diverges when dull approaches J$\~_ This may 
happen a: Q + 0 in the case D, = D2 (fig la) or at 
some finite Q value in the case D, > D2 (fig. 1 b). 

We would like to draw the reader’s attention to 
a treatment of the wild type and mutant of 
bacteriophage Ql3 by means of a two-dimensional 
model system f 1 J_ 

4. A simplifying model for replication with errors 

In order to conceive a model for polynucleotide 
replication with errors we have to consider the 
nature of mutations in some detail. The available 
experimental data (for a recent ki.letic study on 
RNA replication, see ref. 3) estabh& !br;i :em- 
plate-induced replication proceeds digit per digit 
from the 5’ end to the 3’ end of the newly synthe- 
sized molecule. Point mutations are single-digit 
errors of the replication process_ For the sake of 
simplicity we dispense with a discussion of other. 
usually rare sources of replication errors except 
point mutations. But, in principle, deletions or 
insertions occur as well. They could be incorpo- 
rated into a modified model. Accordingly. we can 
assign a single-digit accuracy to every propagation 
step of the growing chain. In the case of a polymer 
with Y segments the quality factor Q can be written 
down as a product of Y individual factors (4,; 
i= 1 ,---. v). This assumption does not necessarily 

mean that a single-digit accuracy of the replication 
process is independent of the preceding base-pairs. 
The influence of these base-pairs is implicitly con- 
tained in the corresponding, position-dependent q 
factor. For the correct replication of a given poly- 
nucleotide, e.g., I,. we obtain: 

&& = q~~‘-q~~“__.q~~‘= zj; (18) 

where 4, is the single-digit accuracy of the in- 
corporation of the first base, 42 that of the in- 
corporation of the second base, etc. This single- 
digit accuracy depends on the nature of the base 
to be incorporated, on the preceding base-pairs. 
and on the mechanism of replication as well as on 
environmental factors. Following eq. IS, we define 
a mean single-digit accuracy GA which accounts 
implicitly for all these influences. and which is 
characteristic for a given sequence I,. For long 
enough, naturally occurring, particularly non-repe- 
titive polynucleotides with similar mean base com- 
positions, these mean single-digit accuracies will 
mainly depend on thz mechanisms of replication, 
since specific neighbour effects cancel out in long 
sequences. 

With slight modifications. eq_ 18 is also useful 
as a quantitative measure for the frequencies of 
the various point mutations. To this end, we have 
to assign single-digit mutation frequencies to the 
different base exchange processes. ProceedinS sys- 
tematically we distinguish three classes of base 
exchanges: (1) purine-purine and pyrimidine- 
pyrimidine, an AU pair is replaced by a CC pair 
and vice versa; (2) intrapair exchange, A is re- 
placed by U or G is replaced by C and vice versa: 
and finally (3) interpair purine-pyrimidine ex- 
change, A is replaced by C, U by G, G by U or C 
by A. All possibilities are summtized in table 1. 
Again we can account implicitly for the iofluences 
of the preceding base-pairs on the n: station fre- 
quencies and assign position-dependent factors For 
base exchange (table 1 and fig. 2) We denote the 
three mutation frequencies at position ‘i’ of the 
polynucleotide I, by &k) , , /3/&j and yjL;)_ In absence 
of insertions and deletions we have the conserva- 
tion relation 

q!*)~~!h)+~!L’~y!k)=t (19) 

which simply expresses the fact that we have one 
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Table I 

Systematics of point mutations 

Base in the Class of point mutation 
original sequence 

Purine-purine Intrapair exchange Interpair purine-pyrimidine 
pyrimidine-pyrimidine exchange Pyrimidine-purine exchange 

Base in Frequency Base in Frequency Base in Frequency 
the mutant the mutant the mutant 

G A ,tG) C p’ u p’ 

A G *(A) U @‘N c ++., 
C U ,K) G f#C’ A +<-I 
u C &J% A @‘U’ G _pf 

of the four bases at position i in the replica. For 
these four possibilities, the correct copy and the 
three mutations at position i, I, -+ II, I, - I,,, 

I, - I,, we thus obtain the foliowing four ele- 

I, + l,:Q,, = q:h’.q:~‘.__yr’L’_,_q!L’ f20c) 

All these expressions are exact insofar as 
neighbowing effects are taken into account im- 
plicitly. As we see from fig. 2, the pattern of 
possible mutations becomes exceedingly com- 
pficated for larger values of Y and hence we base 
to look for physically meaningful simplifications_ 

Systematic studies cm base replacements in 
bacteriophage RNA replication [2,5,16] revealed 

Fig. 2. Systematics of point mutations. We distinguish three classes of base exchange Processes: (1) purine-purine. pyrimidinc-pyrimi- 
dine exchange (p ), (2) intrapair exchange (- - -) and (3) interpair purine-pyrimidine exchange (.....)_ We present the two 
most simple examples. P = 1 (A) and P = 2 (8). In the case where we restrict our analysis to base exchange Processes of one ckss only. 
the set of 4’different sequences can be partitioned into 2* disjoint subsets of 2’ elements. The 2* elements form a v cutie - for the sake 
of simplicity we use 0 and I as digits after restriction. Irt the ease of Y = 1 we obtain a s:raigbt Iine (A). in the case of P - 1 a square 
(3). The radon&e behind this simplificalon is to be zwzm in the e~pezimenra? fact that brtso exrhzmge prwesses of class I occur much 
more readily than those of the otkr two classes (cf. table 1 f. 



that put-me-purine, pyrimidine-pyrimidine ex- 
change is the most frequently occurring type of 
point mutations, at least in the particular cases 
investigated_ The physics behind this finding seeins 
to lie in the relative stability of the GU or UG 
wobble pairs. Presumably, this preference is very 
generai and not an idiosyncrasy of some peripir- 
era1 bacteriophages_ The other two classes of point 
mutations then are rare events and we have: 

&yea=1-q (21) 

Our simplifying model is based on the validity of 
eq. 21 and the ‘averaging out’ of neighbouring 
effects in long sequences. We assume the same 
mean single-digit accuracy for all polynucleotides 
under consideration, X_ = q, and we restrict our 
model to mutations of class 1: (Y = 1 - q_ Then. the 
diagram of possible mutations reduces to a set of 
equivalent cubes of dimension Y (figs. 2 and 3; 
these ‘Y cubes’ are straight lines for Y = 1, squares 
for Y = 2, cubes for Y = 3, etc.). The Q matrix is of 
a fairly simple form, since the frequency factors 
Qik for mutations of this class, I, -+ Ij, depend on 
the Hammi ng distances of the two sequences, D,,, 
only. The Harmning distance is the smallest num- 
ber of base exchanges which convert a given se- 
quence (Ik) into another (Ii): 

I, * I,: D ,& = d; Qjp = q--d(I - q)d (22) 

The rare mutations which we have excluded by 
means of eq. 21 can be visualized easily by jumps 
from a given Y cube to an equivalent one within 
the complete mutation diagram (fig. 2; to give 
examples such jumps lead from the A-G line to the 
U-C line in the u = 1 case or from the 
(AA,AG,GG,GA) square to one of the three other 
squares, e.g., the (UA,UG,CG,CA) square for Y = 

2). 

5. Some low-dimensional test cases (u = 3) 

The system with Y = 3 consists of eight different 
sequences (n = 8): the scheme of mutations is 
shown in fig. 3. The Q matrix is mapped onto a ‘3 
cube’, every edge of the cube corresponds to a 
factor 1 - q_ The matrix element Qii thus is of the 
form q3-d( 1 - q)d where d is the minimum num- 

(111) 

Fig 3. The eight sequences of the twedigit system with Y = 3. 

Fig. 4. Numerical integration of eq. 1. the rate constants chosen 
are:A,=5,A~=3.A1,=2,A~=...=Ag=1.1 and&=...= 
OS = 1.0 in arbitrary reciprocal time and concentration units. 
The single-digit accuracy of replication was q= 0.8. Initial 
concentrations: x,(O) = 1. x,(O) = 2, ~~(0) = 7 and x,(O) = _ __ = 
x8(O) = 0 were applied. 
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Table 2 

The steady state of the system described in fig. 4 (Y = 3; 
q= 0.8; the A, values are 5.3,2.1.1,1.1,1.1.1.1 and 1.1 for i= 
1. _ _ _. 8, respectively) 

We present the exact eigenvector together with the results of 
first- and second-order perturbation theory according to eqs. 
16b and 17b. 

Penurbarion theory 

First order Second order 

Exact values 

i=l 0.381 0.305 0.347 
2 0.238 0.209 0.184 
3 0.159 0.144 0.139 
4 0.122 0.115 0.113 
5 0.03 1 0.079 0.073 
6 0.03 1 0.070 0.064 
7 0.03 1 0.05 1 0.05 I 
8 0.008 0.026 0.03 1 

ber of edges separating the two comers corre- 
sponding to the sequences 1; and Ii_ In order to 
make it easier to follow the forthcoming discussion 
it is wor:hwhile to present the matrix IV for this 
example (as introduced in fig. 2 the two digits are 
denoted by 0 and 1): 

ooo 100 010 00: 
IV 

1 2 3 4 

ory and by exact calculation is shown in table 2. 
We realize the expected improvement of the first- 
order results by the second-order terms. This par- 
ticular case study provides also an opportunity to 
check the reliability of the zeroth-order approxi- 
mation As we have outlined before. a computa- 
tion of the superiority (u,) of the master sequence 
(I,), if it is not determined experimentally, re- 
quires e knowledge of the quasi-species distri- 
bution_ For the purpose of comparison. we may 
use the three eigenvectors summarized in table 2 
and obtain from first-order perturbation theory 

o, = 2.424 and .$“‘= 0.169 

from second-order perturbation theory 

0,=2.690 and &“=0.233 and 

from the exact quasi-sptcies distribution 

0, = 2.739 and 2:“’ = 0.231. 

It is somewhat satisfactory to notice that the use of 
the exact results leads to that value of ,$“’ which is 
closest to the correct numerical value (5, )_ 

In the next example we consider the Q depen- 
dence of the steady state. In order to avoid any 
difficulty in the computation of the superiority (pi. 

110 101 011 111 

5 6 7 8 

ooo 1 A,q’ --Gq’(l- 4) A,q’(l- q) A,q’(l- q) Asq(, _ q)2 A,q(i -q)= A,q(l- q)2 A,(1 - qf 

100 2 A,q’(l- q) Azq3 A,q(l- 4)? Aq(l- 4)’ A,q’(l- q) A,q’(l-q) A7(l - q)J A,q(l- 4)? 

010 3 A,q’(l- q). Azq(l- 4)’ A,q’ A,q(l- q)’ A,qZ(l - q) A& I- qf A,q’(l- 4) A,q(l- 4F 

001 4 A,q’U - q) Azq(l- q)l A,q(l- q)> A,q3 A,(1 - qf A,q'(l - q) A,q’(l - q) A,q(l - q)’ 

110 5 A,qlI - 4)’ A24’(1- 4) A$I’(l- 9) A,(1 - 4)’ A5q3 -QHl- q)= A,q(l- q)’ A,q=(l- q) 

101 6 A,q(l- q)2 A,q’(l- q) A,(1 - q)3 Aq’tl- 4) A,q(l- 4)? +?” A&l- 4)2 --@(I - q) 

011 7 A,q(l- q)2 A,( 1 - q? &7’(l- 4) Aaq2(1 - 4) A,q(l- q)’ A,qir - 4)’ -%q’ A,q’(l-q) 

111 8 A,(1 - 4)3 A,q(l- 9)I Ajq(l- q)’ A,q(l- q)’ A,q’(l- 4) &7?l- 4) -+?(I - 4) A,$ 

At first, we consider an integration of the dif- we assume equal rate constants for all mutants 
ferential equation (eq. 1) with a properly chosen (Az=A,=..., = A, = 1). All decomposition rate 
set of numerical values for rate constants and constants were chosen to be equal as well and 
initial concentrations. The resulting solution curves hence do not enter into the calculation of the 
are presented in fig. 4. It takes about three time mutant distribution_ Without losing generality, we 
units for the system to reach the steady state. A put D*=D2=___ =D,=D=O. For A,=4. we 
comparison of the stationary eigenvectors ob- thus have a superiority u, = 4 independently of the 
tained by first- and second-order perturbation the- final mutant distribution_ The results are shown in 
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Fig. 5. Largest eigenvalue (X,) and the coefficient (zt ) of the 
corresponding eigenvector for the eight-dimensional case (P = 3. 
R = 8). We present exact solutions (- ) together with the 
resttits of zeroth-order (I - - _ -)_ first-order ( - - - _ - ) and 
second-order (- - - - -) perturbation theory Numerical values 
chosen are: A, = 4, A2 =__. =A,=1 and D,=...=DR=O in 
arbitrary reciprocal time and concentration units. 
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fig. 5_ We notice subsequent deviations of the 
zeroth- (first) and second-order perturbational ap- 
proach from the exact curves for eigenvalues and 
eigenvectors. As expected the second-order ap- 
proximation to the eigenvalue diverges for Q -+ 0. 
We observe also that the exact solutions for 5, and 
hr pass through a minimum and increase again 
when Q + 0. We shall draw our attention to this 
fact on the basis of the next example. 

Now we consider the same dependence of the 
eigenvector on the accuracy of the replication pro- 
cess but we take a slightly different point of view. 
We plot our results as functions of the single-digit 
accuracy q (fig. 6). In principle, the change from Q 

to q = f@ means only a scaling of the abscissa_ 
We shall, however, consider the physical interpre- 

Fig. 6. The mutant distribution in the quasi-species ( v = 3). The eigenvcctor ( .&; i = 1, _ _ __ 8) cot-responding to the largest eigenvalue 
(A,) is presented as a function of the single-digit accuracy 4. Note that all sequences are present in equal amounts at the point of 
stochastic replication (4 = 0.5). For 4 < 0.5 we observe complementary replication: sequences are selected in pairs (It.1,). (l,.l,), 
(I,.I,) and (I,.l,). These pairs are complemebtary sequences (cf. fig. 3). The numerical values chosen are: A, = 10, A2 =-__ = As = 1 
and all D values equal. 



tation of the q dependence_ At q = I we have 
accurate replication. Every digit is duplicated with 
ultimate precision. Single-digit accuracies q < I 

imply a certain frequency of errors. Once in a 
while the wrong digit is incorporated during the 
replication process. 

Let us consider now the case q = 0.5. Correct 
and wrong digits are incorporated with equal fre- 
quencies. In this case we may speak of statistical 
replication, since there is no direction of the repli- 
cation process by the template: all sequences, the 
correct copy and the mutants are formed with 
equal probabilities_ Accordingly, even the most 
efficient template - the master sequence I z at large 
enough q values - does not benefit from its larger 
rate constant (A,)_ Hence, as we see in fig. 6. all 
eight sequences are present in equal concentrations 
at q= 0.5. 

Single-digit accuracies q < OS mean that wrong 
digits are incorporated with higher frequencies than 
the correct ones. Thus, we find another kind of 
regularity with an altered logic of replication. At 
q = 0 we encounter again a completely determined 
situation: digits alternate. every ‘0’ i, replaced in 
the copy by a ‘I’ and vice versa, What we observe 
is replication by means of complementary strands. 
This kind of a replication process has been studied 
in some detail before [Sl (see also ref. 9). The 
matrix W at q= 0 can be factorized into four 
2 x 2 diagonal blocks, each combining two com- 
plementary sequences. I, and I_ . All these blocks 
are of the same form: 

I.. J- 

-i-- 
I, 0 A- 

I- A, 0 

The positive eigenvalue and the cora-* ponding ei- 
genvector of this 2 X 2 matrix are x = dA + A _ 

and $, = K/\IA ~ t- ,E. In our example we 
are dealing with four plus-minus ensembles: 
(000,ll I), (100,Ol I), (010,101) and (001,110). These 
four plus-minus ensembles compete. The subsys- 
tem with the largest eigenvalue contains the plus- 
minus ensemble which is seIected, In fig. 6 this is 
the combination (000,111). Note that the two se- 
quences are present in the ratio l/m at q = 0, 
since we applied the following rate constants: A, 

=lO,A,=A,=,.. A, = 1. In the case of two-digit 
replications we are in a position to describe direct 
and plus-minus replication by the same general 
type of equation. In terms of single-digit accu- 
racies the former mechanism is restricted to the 
domain 1 zr q > 0_5_ The latter case can be char- 
acterized by 0 1 q < 0.5. Finally, we would like to 
mention one point: the nice property eq. I receives 
through the incorporation of eq. 22, namely the 
ability to describe both. direct and plus-minus 
replication. holds only for true two-digit systems. 
We can apply the equation in both ranges to 
approximative treatments of the biological four- 
digit-(G,A,C,U) system. e.g.. as we did by means 
of eq. 21 in the domain 1 2 q > 0.5. Then. the 
nature of the approximation. however. has to be 
different: from eq. 21 follows that A is the most 
likely alternative to G in mutations. whereas G, C 
complementarity is the basis for plus-minus repli- 
cation in the range 0 5 q < 0.5. 

6. A model for cases of higher dimensions (v > 3) 

In section 4 we made an attempt to simplify the 
analysis of eq. 1 by introducing a two-digit system. 
However. the number of possible sequences. II = 2’. 
is still restrictive for a complete analysis of 
higher-dimensional cases. Nevertheless. we are 
looking for a test of the results from perturbation 
theory for Ionger sequences. Consequently, we need 
another kind of simplification which leads to a 
drastic reduction of the dimension of the eigen- 
value problem to be solved..For this goal we form 
classes of sequences within a quasi-species iiistri- 
bution. These classes are defined by means of the 
Hamming distances between the master sequence 
and the sequence under consideration. Class 0 
contains exclusively the master sequence, class 1 
all Y one-error mutants, class 2 all (s) two-error 
mutants. etc. In general, we have all (z) X--error 
mutants in class X-_ Now we make two assumptions 
concerning the rate constants in order to prepare 
the system for a reduction of the 2’-dimensional 
differential equation for individual sequences to a 
(V + I)-dimensional equation for individual classes: 
(1) all rate constants for the degradation process 
are assumed to be equal D, = 4 = . _ - = Dsy = D 



and, hence, have no influence on the stationary Finally, there remains the calculations of the ele- 
mutant distribution; and (2) all formation rate ments of the matrix 0’ which describes mutations 
constants are assumed to be equal within a given from an error class &to another_ A lengthy but 

straightforward calculation 1231 yields for muta- 
tions from class 1 into class k: 

class, i.e., for 

class 0, An==A&; for 

class 1, A,=A2= ___ =A,=A;; for 

class 2. A-_+, =A,+2= --- 

A =+(;,= A;; and, in general, 

class k, A~;,i<;,+.._+~;_,,+r = --a_= 

A <;,+<:,i.._+t;,=AL 

New variables yi are introduced for 
centrations of classes: 

* i-c;,++ . . . i(i) 

for 

o;,= c q’-2’-lr-ll.(~_9)2~--I~--Iil 
j - 0 

-( V--i )( I 

j+~{rr-kj-_(I-k)) j+f(fr-kp(l-kk)} 1 
(241 

the con- 

where m = [f(minQ+ k,2v-- (I+k)}-]jf-- kf)]. In 
cases where the expression in square brackets is a 
half integer, the summation index j runs to the 
next smaller integer. 

From eq. 24 we obtain the following expression 
for the diagonal elements of the matrix Q’: 

_ro=50._Y,= ~S,....~Yh,= c 5, (23) 
i-1 v I-(,,+(;>+...+(kI_,) p;& = 2 g-y I- qp 

j-o 
(“;“)(;) 

V=L 

+--cl- -q- 

Fig. 7. Distribution of mutant classes as a function of single-digit accuracy 4 (P = 3 and 4). By GE,,, we denote the sum of all m-error 
murants of the master sequence I,. These are all mutants which are characterized by a Hamming distance D = m from the master 
sequence. The corresponding sum of concentrations is denoted by&,. At the point of stochastic replication (4 = OS) all sequences are 
present in equal amounts. The distribution of mutant classes then is given by the binomial coefficients: &, = f&)-2-*- Numerical 
values chosen are the same as in fig. 6 (A0 = IO, Ai = 1, i * 0, al1 D, equal). 
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Fig. 8. The range of validity of perturbation theory in the calculation of quasi-species_distributions as a function of the chain length v. 
We present the coefficient of the master sequence in the stationary distribution: E1 is the exact solution (upper curve). @’ the 
zeroth-order approximation (lower curve). Note that the agreement gets better and better the longer the sequences are. For D = 50 
both curses coincide for practicat purposes. Numerical values chosen are the same as in fig. 6 (A, = IO: A, = I. i = 0; all D, equal). 

with tn = min(&,v - k). 
The differential equation we have to study now 

is analogous to eq. 5, after insertion of eq. 2: 

frequencies of the mutant classes are simply given 
by binomial coefficients. For the stationary con- 
centration of the mutant classj we find 

~,=_Y,(A;Q;~-o-z)+ c A;Q;,;i,j=O.l,._.,s (26) I Y F=- 
j-, 0 -I 2’ j :j = O.I..... vi-I:q=0.5 (27) 

The obvious difference between eqs. 5 and 26 is to 
be seen in the structures of the matrices Q and Q’: 
Q is symmetric, Q,i= ii, since the statistical 
probabilities of mutatrons and corresponding 
backward mutations are equal. The same rationale 
does not hold for classes of mutants 

For q c 0.5 we observe complementary replica- 
tion: a given sequence is selected together with the 
complementary strand. 

QJ’i = Q;i* 

In fig. 7 we present the distribution of the mutant 
classes for systems with P = 3 and Y = 4 as func- 
tions of the single-digit accuracy q_ At q = 0.5 the 
concentrations of the individual sequences become 
equal; since we have stochastic replication q = 1 - 
q, incorporation of correct and complementary 
digit occurs with the same probability. Then, the 

The change in variables - from concentrations 
of individual sequences to concentrations of whole 
mutant classes - reduced the number of variables 
from 2’ to V+ I and we are now in a position to 
test the range of validity of the approximations 
derived by perturbation theory. The results ob- 
tained can be subsumed under two important 
statements: 

(I) the Ionger the polynucleotide sequence is. 
the better is the agreement between perturbation 
theory and exact results (fig. 8). For long enough 
sequences, ir > i0, the zeroth-order approximation 
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Fig. 9_ Distribution of mutant classes as a function of the single-digit accuracy q for D = 10. Note the transition from direct to 
stochastic replication around qmin_ In comparison to fig. 7 we realize the existence of a broad domain of stochastic replication which 
was restricted to the point q = 0.5 for the short sequences (P = 3.4). For basic definitions and numerical values see fig. I 

practically coincides with the exact solution as 
long as the replication process is accurate enough. 
What ‘accurate enough means can be defined 
precisely by means of the zeroth-order approxima- 
tion to the eigenvector of the largest eigenvalue 
(eq. X3b). A non-vanishing concentration of the 
master sequence (IV: requires: 

~~‘>OOQ~>Q,~~=~~~,=~~‘- 

The range of vahdity of the analysis by perturba- 
tion theory thus is given by q s qmin = ( uo)- Ifr_ 

(2) The range of q values where stochastic repli- 
cation occurs spreads enormously with increasing 

* For the sake of convenience, we use here ‘0‘ instead of ‘1‘ to 
denote the master sequence. 

ohgomer length Y_ For P = 3 and D = 4 (fig. 7) wz 

observe a uniform distribution, i.e,, equal con- 
centration of sequences, exclasively at the value 
q = 0.5 (In these two cases, the critical single-digit 
accuracies are qmin = 0.464 for Y = 3 and qmin = 
0.562 for V= 4; (70 was chosen to be 10 in all 
examples presented in figs. 7-10.) For Y = 10 
(fig. 91, the existence of a stable quasi-species is 
confined to the range I > q > qmin = G-794. Sto- 
chastic replication is observed for single-digit ac- 
curacies q c 0.7, since the concentrations of all 
sequences are equal for practical purposes beyond 
this value. For longer sequences, we show plots for 
Y = 50 in fig. IO, the transition from the xange of 
stable mutant distributions to stochastic replka- 
tion sharpens enormously. We find a uniform se- 
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Fig. 10. Distribution of mutant classes as a function of the single-digit accuracy q for Y = 50. Note :he sharpness of the transition from 
direct to stochastic replication around qmin._ This is seen best on the Iogarithmic plot. In the domain of stochastic replication individual 
concentrations become exceedingly small: 5, = 8.9 x IO- 16_ i = 0. _ _ _ Zso - 1. For basic definitions and numerical values set fig. 7. 

quence distribution at single-digit accuracies q < 

qmin very close to the critical value ahead-r (The 
relative concentrations of individual sequences then 
become exceedingly small. & = 2--50 = S-9 X 
lo- 16_) For polymer sequences (v > 50; this transi- 
tion sharpens further (we exter.cied our calculation 
up to the size of tRNA-like molecules with v = SO). 
The concept of a sharp error threshold as champ- 
ioned by Eigen and Schuster [9] is thus well justi- 
fied. 

The numerical finding that perturbation theory 
and exact solution yield converging results for 
increasing chain lengths v in the range of accurate 
enough replication can be confirmed analytically 
[23]. The relative importance of second-order con- 
tributions to the eigenvalue vanishes for large v - 
and IV,, > E_ ,: 

&p 
lim 1 =O. 

r-z.2 x(p) 

inspection of higher-order terms leads to the strong 
conjecture that these contributions vanish as well 
and, thus, the zeroth-order result coincides with 
the exact solution. 

7. Conclusion 

The model we applied to polynucleotide repli- 
cation is based essentially on two assumptions: (1) 

replication errors are restricted to point mutations 
which are described by a two-digit model. and (2) 
the kinetic parameters of all sequences in a certain 
mutation class are assumed to be equal. Both 
assumptions. at first glance. may appear somewhat 
unrealistic_ The first assumption can be justified 
more easily because of the unequal frequencies for 
different types of base exchange processes (see the 
data on bacteriophage Q5 quoied in section 4; for 
the frequencies of point mutations in higher 
organisms and their interpretation by information 
theory see, e.g., ref. 25). The second assumption is 
more restrictive: Not all one-error mutants will 
have the same kinetic properties and the same will 
be the case for the sequences in the other mutant 
classes. When we study established populations, as 
we do here, and dispense with a consideration of 

Fig. 11. Replicarion as a fun&or of single-digit accuracy 
(schematic). 



changes in the environment, the distribution of 
kinetic parameters within the mutant classes, how- 
ever, has little influence on general results only. 
Through these two assumptions we are now able 
to handle up to 280 and more individual sequences 
explicitly_ 

The model enabled us to derive three general 
results for the kinetics of self-replication with er- 
rors: 

(1) In the range of sufficient replication accu- 
racy. i.e., the range in which stable.mutant distri- 
butions-quasi-species-are found, (zeroth-order) 
perturbation theory predicts the exact distri- 
butions of polynucleotide sequences (Y > 20) very 
well. The differences between approximate and 
exact solutions decrease with increasing chain 
length. 

(2) The kinetic model applied described both 
direct and complementary (plus-minus) replication 
in different domains of the single-digit accuracy 4 
(fig. 11). Above the critical accuracy. 1 2 q > qmin. 
we have direct replication and formation of a 
quasi-species_ Below another critical value of q 
which we denote here by qmnx. i.e., in the domain 

4 ZXIB. z=- q 2 0. we observe complementary replica- 
tion and formation of a kind of quasi-species the 
elements of which are plus-minus pairs of poly- 
nucleotide sequences_ 

(3) the domains of direct and complementary 
replication are separated by an intermediate range 
of stochastic replication, qmin > q > qmax_ In this 
range all sequences have equal probabilities_ Repli- 
cation is not accurate enough in order to sustain 
faithful transfer of sequences from one generation 
to the next. The kinetic parameters have no in- 
fluence on the stationary mutant distribution. For 
very short sequences (Y I 4) this intermediate range 
is more or less confined to the point q = 0.5. With 
increased chain length Y, however, qmin is readily 
shifted towards q = 1 whereas q,, moves towards 
q = 0. In the case of longer sequences. polynucleo- 
tides with v > 50, both domains of faithful replica- 
tion are very small compared to the t-road inter- 
mediate range of stochastic replication_ 

Stochastic replication has another important 
aspect which is not q&e evident Trorn the preced- 
ing discussion of the results derived from differen- 

tial equations. The number of possible sequences 
is superastronomic 2’ or 4’, respectively, already 
for polynucleotides of medium chain lengths_ Thus, 
it exceeds by far the number of individuals in any 
realizable population_ The range of stochastic rep- 
lication, as we have shown by means of exact 
numerical solution of the eigenvalue problem, can 
be understood as an extension of the point q = 0.5. 
Here incorporations of correct and erroneous bases 
occur with equal probabilities_ Hence, all se- 
quences are present in equal amounts in the range 
of stochastic replication. The deterministic ap- 
proach is no longer appropriate, since we really 
cannot have less than a single copy of a given 
sequence in the volume under consideration_ We 
are dealing with a set of sequences which changes 
from generation to generation. New sequences ap- 
pear due to copying errors and a certain per- 
centage of the old sequences disappears as a conse- 
quence of degradation and dilution The notion 
‘presence in equal amounts’ can be replaced (at 
best) by ‘equal probability of realization’ in the 
course of a long-term experiment (The increase in 
accessible sequences due to the effect of multiple 
turnover is rather limited, since the time available 
is small compared to the largeness of numbers like 
r or 4’ with Y L- 100.). 

Faithful replication, direct as well as comple- 
mentary, can be approximated appropriately by 
differential equations despite the breakdown of 
the deterministic approach in the intermediate 
range of accuracy_ For this goal we restrict the 
variables of the differential equation to the master 
sequence and its most frequent mutants. Rare 
mutants are not accounted for explicitly_ The ap- 
pearance of a rare mutant is not described by the 
deterministic system. It can be considered as a 
stochastic event. Mutants less efficient than the 
master sequence will soon disappear after they 
have entered the ensemble of replicating mole- 
cules. More efficient mutants may replace the mas- 
ter sequence. Evolution in such an extended de- 
terministic system of differential equations reflects 
the concerted action of chance represented by the 
stochastic event and necessity acting through the 
selection process_ 
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