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We report a detailed analytical and numerical model study of pattern formation during the develop-
ment of visual maps, namely, the formation of topographic maps and orientation and ocular dominance
columns in the striate cortex. Pattern formation is described by a stimulus-driven Markovian process,
the self-organizing feature map. This algorithm generates topologically correct maps between a space of
(visual) input signals and an array of formal “neurons,” which in our model represents the cortex. We
define order parameters that are a function of the set of visual stimuli an animal perceives, and we
demonstrate that the formation of orientation and ocular dominance columns is the result of a global in-
stability of the retinoptic projection above a critical value of these order parameters. We characterize
the spatial structure of the emerging patterns by power spectra, correlation functions, and Gabor trans-
forms, and we compare model predictions with experimental data obtained from the striate cortex of the
macaque monkey with optical imaging. Above the critical value of the order parameters the model pre-
dicts a lateral segregation of the striate cortex into (i) binocular regions with linear changes in orienta-
tion preference, where iso-orientation slabs run perpendicular to the ocular dominance bands, and (ii)
monocular regions with low orientation specificity, which contain the singularities of the orientation
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map. Some of these predictions have already been verified by experiments.

PACS number(s): 42.66. —p, 87.10.+e, 05.40.+j, 89.70.+c

I. INTRODUCTION

Pattern formation by self-organization is a common
phenomenon in brain development. The enormous num-
ber of neurons and connections makes it impossible for
an organism to completely specify neural connectivity
patterns within its genome. Instead, an organism seems
to store procedural information—sets of rules that define
developmental processes organizing the brain. In con-
trast to self-organization in “physical” systems, structure
in “biological” systems does not necessarily emerge spon-
taneously from initially homogeneous states. Informa-
tion is often extracted from the outside world and im-
printed into an appropriate spatial pattern. Self-
organizing processes, which are characterized by an in-
formation flow from the outside world into the biological
system are generally called ‘“‘unsupervised learning.”
These processes will be the focus of this paper.

The development of the mammalian visual system is
one of the best studied areas of self-organization in the
brain. After maturation, nerve fibers originating from
the ganglion cells in the retina project via the thalamus to
an area of the brain called the primary visual cortex. (In
primates there exists only one projection area per brain
hemisphere, area 17 or the striate cortex.) As the only
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gateway to higher cortical areas, the primary visual cor-
tex has to process all possible elements natural scenes
may contain, including contours, texture, color, shading,
disparities, and motion. This leads to a lateral segrega-
tion (and specialization) of the striate cortex into regions
which are concerned with the detection and processing of
certain image elements or combinations thereof, and
gives rise to characteristic spatial patterns called cortical
maps [1-7].

It is now generally accepted that cortical maps are a
product of self-organization and are to some extent
“learned” by visual experience [8,9]. Although a crude
structure is set up in the absence of external input, ap-
propriate visual stimulation is necessary for the visual
cortex to obtain its full information-processing capabili-
ties. Experiments have shown that maturation continues
after birth and that the final organization depends on the
statistical properties of the perceived patterns. However,
the degree to which cortical maps are the result of a
learning process as well as the origin of the observed spa-
tial structure are still a matter of controversy.

Several activity-dependent mechanisms have been pro-
posed to shape the structure of cortical maps [10-24].
These mechanisms can be characterized by the basic pro-
cess underlying pattern formation and fall into three
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classes.

(i) Pattern formation from templates [16,20]. The indi-
vidual cells gain their properties by a process which
amplifies weak preferences introduced by the geometrical
arrangements of receptor positions in the retina or by ini-
tial synaptic weights between neurons. There is no cou-
pling necessary between neighboring cells in the cortex.
Neighboring cells have correlated response properties,
because they receive their input from overlapping popula-
tions of cells in the preceding layer, e.g., the retina.
(These models assume a crude topographic projection be-
tween retina and cortex.)

(ii) Pattern formation by spontaneous symmetry break-
ing [15,17-19]. The individual cells gain their properties
by spontaneous symmetry breaking in an energy function
that governs the maturation of cortical cells. The sym-
metry breaking occurs for each cell separately. Correlat-
ed spatial patterns emerge due to weak coupling between
neighboring cortical cells.

(iii) Pattern formation by unsupervised learning
[10-14,21,22]. These models are based on competitive
learning networks. The cells within cortex are strongly
coupled and the coupling is essential for the individual
cells to gain their specific properties as well as for the
spatial pattern to emerge.

Unfortunately, most of the numerical simulations of
these and other models have not been elaborated enough
to be experimentally testable. This led to the unsatisfac-
tory situation in which it has not yet been possible to
evaluate the basic mechanisms that have been suggested
to shape the spatial structure of cortical maps.

In the following we want to report on an analytical and
numerical study of a simple pattern formation process,
the self-organizing-feature-map (SOFM) algorithm of
Kohonen [13,14]. The model provides an intermediate-
level description of neural pattern formation which is
based on a small set of abstract but biologically plausible
assumptions [25]. The model falls into the third category
and explains the development of cortical maps as unsu-
pervised learning and the spatial structure of these pat-
terns as a dimension-reducing map between a high-
dimensional feature space and a two-dimensional cortical
surface [25,21,22]. In a previous numerical study [22], we
investigated the joint formation of a retinotopic projec-
tion and an orientation-column system, and we have
demonstrated that the resulting maps closely resemble
the maps that are observed in the primary visual cortex
of a macaque monkey and a cat. In previous analytical
studies [26,27] it has been demonstrated in a simplified
case that ocular-dominance-column-like patterns can
emerge as the result of a global instability of a retinotopic
projection under certain stimulus conditions.

In the present contribution we will provide a theoreti-
cal framework to study the combined formation of re-
tinotopic maps and orientation and ocular dominance
columns and extend our previous studies to analyze a
dimension-reducing map between a five-dimensional
feature space (two dimensions for the position of a recep-
tive field in retinotopic space, one each for orientation
preference, orientation specificity, and ocular dominance)
and a two-dimensional network that represents cortex.
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We will present a detailed analysis of the spatial patterns
and compare model predictions quantitatively with ex-
perimental data.

The paper is organized into five parts. Section II will
provide the biological background and Sec. III gives a
short description of the algorithm and its mathematical
properties. Following the ideas of [26] we will provide a
mathematical analysis of map formation in Sec. IV and
we will demonstrate that the orientation and ocular-
dominance-column systems emerge as the result of a glo-
bal instability of the topographic projection. The last
section is concerned with a detailed analysis of model
predictions with regard to the spatial structure of cortical
maps. It contains a comparison with experimental data
obtained from the macaque stiate cortex using optical im-
aging [3,5,6].

II. CORTICAL MAPS IN THE PRIMARY
VISUAL CORTEX OF THE MACAQUE

In this section we will provide the biological back-
ground and briefly describe the spatial structure of the re-
tinotopic map, the orientation and ocular-dominance-
column systems in the striate cortex of the macaque (Ma-
caca nemestrina). Since the focus of this paper is on a
mathematical analysis of map formation and map struc-
ture we will provide only the information necessary to
motivate the theoretical approach and to allow a compar-
ison of model predictions with experimental data. If one
is interested in details of data acquisition, data postpro-
cessing, and a comparison of the displayed data with re-
sults obtained with other techniques, one may wish to
refer to [3,5,6].

The cerebral cortex of primates is a thin layer of cells,
which covers most of the surface of the brain. Although
the cortex can be histologically divided into six layers,
the response properties of the neurons seems to vary
mainly laterally only and to be roughly identical in all
layers. Accordingly, columnar models of cortical organi-
zation have been suggested [1] which describe the func-
tional architecture of the primary visual cortex by a two-
dimensional spatial pattern of neural response properties
across the cortical surface. This description, although a
simplification, seems to capture the essential aspects of
cortical organization. Therefore we will adopt it for the
following investigations.

The nerve fibers originating from the ganglion cells in
the retina project via the thalamus to the primary visual
cortex in a topographic manner, such that nearby loca-
tions in the retina project onto neighboring locations in
the cortex. This type of connectivity pattern is called a
topographic map. On a spatial scale above several millim-
eters (in the cortex) the magnification factor of the map,
the cortical magnification factor, varies with cortical loca-
tion. On a spatial scale below a few millimeters, however,
these variations of the cortical magnification factor can
be neglected in first approximation except for regions
which represent the extreme periphery of the visual field.

The projection from the thalamus to the cortex is
slightly divergent, so that each neuron in the cortex re-
ceives its input from a small area of the retina. However,
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only stimuli that are presented to the center of this re-
gion, the receptive field, elicit a measurable response. The
sharpening of the tuning to the position of localized
stimuli in the visual field is, at least in part, the result of
lateral interactions between neurons. Receptive fields are
the result of the collective dynamics of a large number of
cells, and we will, therefore, adopt a mesoscopic descrip-
tion and assign receptive fields not to single cells but to
small volumes of the cortex (“‘columns’’), which we will
label by their location r on the cortical surface. In the
following we will denote the center of the receptive field
of a column r in visual space by the coordinates w,; and
Wy

Other prominent features of cells in striate cortex are
orientation selectivity and ocular dominance. Orientation
selectivity refers to the pronounced tendency of most
cortical cells to respond maximally to oriented visual
stimuli, light bars, or edges, within a finite range of orien-
tations. Orientation selectivity of a neuron is described
by its response as a function of stimulus orientation, the
tuning curve. Since tuning curves typically exhibit one
peak, they can be reasonably well described by two pa-
rameters: preferred orientation, which denotes the
stimulus orientation yielding the strongest response, and
orientation tuning strength, the difference in response be-
tween a stimulus presented in preferred orientation and
the corresponding ‘“‘orthogonal” stimulus. Following
Swindale [28] we describe orientation selectivity by a
two-dimensional vector w.=(w_,,w) at each cortical lo-
cation r. Length and half the angle (the orientation of an
edge is 7 periodic) of these vectors denote orientation
tuning strength and preferred orientation, respectively.
Again, we assign receptive field properties like orienta-
tion selectivity not to particular neurons but to cortical
locations.

The ganglion cells, which are located in corresponding
regions of both eyes, project to the same area of cortex.
Within the cortex there are many neurons which respond
to stimuli presented to the ipsilateral as well as to the
contralateral eye. The degree of response, however,
might be different for stimuli presented to different eyes.
This effect is called ocular dominance. We will call a re-
gion monocular if it responds to stimuli presented to one
particular eye only, and binocular if it responds equally
well to stimuli presented to either eye. In our model ocu-
lar dominance is described by a real-valued function w,s,
which denotes the difference in response to stimuli
presented to the left and the right eye as a function of
cortical location.

The spatial patterns of orientation preference, orienta-
tion tuning strength, and ocular dominance in area 17 of
the macaque have been studied extensively with optical
imaging techniques [3,5,6]. Figure 1(a) shows the spatial
pattern of orientation preference and orientation tuning
strength recorded from an adult macaque. The image
shows a 4 X6 mm? patch of striate cortex which is locat-
ed near the border to area 18. The orientation preference
is coded by color, where the sequence red — yellow —
green — blue — purple — red describes a complete cy-
cle of preferred orientation from 0° over 90° to 180°.
Brightness indicates the degree of orientation tuning.
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Dark regions indicate that the response is independent of
stimulus orientation, bright regions indicate sharp tuning
to the preferred orientation. On a spatial scale below =1
mm the orientation preferences are correlated and the
orientation map is organized into elongated “iso-
orientation” patches [slabs, arrow 2 of Fig. 1(a)], which
start and end at singularities [arrow 1 of Fig. 1(a)] around
which orientation changes by +180°. On a spatial scale
above ~1 mm the pattern is repetitive along every direc-
tion in the cortex with approximately the same spatial
frequency.

Figure 1(b) shows the spatial distribution of ocular
dominance for the same region. Ocular dominance is in-
dicated by brightness, where dark and bright areas
denote regions driven preferably by the ipsilateral and
contralateral eyes, respectively. The pattern of ocular
dominance is more regular than the pattern of orientation
preference. Regions of similar eye dominance form
parallel bands, which run perpendicular to the border be-
tween area 17 and 18 [to the right in Fig. 1(b)], sometimes
branching and terminating. The fairly regular pattern is
typical for the border region to area 18; it becomes more
irregular further inside area 17. Table I summarizes the
typical features of the spatial pattern of ocular domi-
nance and orientation columns in the macaque striate
cortex. These features should be reproduced by theoreti-
cal models.

ITI. DESCRIPTION OF THE NEURAL NETWORK MODEL

A. The dimension-reducing map problem

We consider a five-dimensional feature space V which
is spanned by quantities describing the most prominent
receptive field properties of cortical cells (Fig. 2). The
five coordinate axes correspond to the position of a recep-
tive field in retinotopic space (v, and v,), to orientation
preferences and specificity (v; and v,), and to ocular
dominance (vs), and are represented by the unit vectors
v,-Vs. (The dimensions v; and v, corresponding to
orientation selectivity are suppressed in Fig. 2 to allow
for visualization.) If all combinations of these properties
are represented in striate cortex, each point in this five-
dimensional feature space is mapped onto one point in
the two-dimensional cortical surface A.

B. The self-organizing feature map algorithm

In order to solve the mapping problem we employ the
feature map (SOFM) algorithm of Kohonen [13,14,29] an
abstract but biologically plausible pattern-formation pro-
cess. The cortical surface is divided into small patches
which are considered as ‘“units” of a two-dimensional
square lattice (Fig. 3) and which are thought to contain
cells with common response properties. Each unit is la-
beled by its discrete position r in the lattice.

The averaged receptive field properties at the location r
are characterized by a feature vector w,, whose com-
ponents w,; denote the receptive field properties: posi-
tion of the receptive field centers in visual space (x,,y,),
preferred orientation (¢.), orientation tuning strength
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FIG. 1. Spatial pattern of (a) orientation selectivity and (b)
ocular dominance in the striate cortex of an adult monkey (Ma-
caca nemestrina). The images were obtained by optical imaging
[5,6] and show a 4 X 6 mm? patch of cortex which is located near
the border to area 18. Orientation preference is coded by color,
where the sequence red — yellow — green — blue — purple
— red describes a complete cycle of preferred orientation for 0°
over 90° to 180°. Orientation tuning strength is normalized and
coded by brightness, where bright areas indicate regions with a
specific response. Ocular dominance is also coded by bright-
ness, where black and white indicate preference for the con-
tralateral and the ipsilateral eye, respectively. The arrows in (a)
mark the two prominent elements of the orientation column sys-
tem, the singularities (arrow 1) and regions where orientation
preferences are organized in parallel slabs (arrow 2).

FIG. 11. Correlation between the spatial pattern of orienta-
tion selectivity and ocular dominance. Color and brightness
code for orientation preference and orientation tuning strength,
respectively, the white lines indicate the borders of the ocular
dominance bands. (a) Experimental data (taken from [5,6]) ob-
tained from an adult macaque. The image shows a 4X6 mm?’
patch of cortex, which is located near the border to area 18. (b)
Overlay of the orientation and ocular dominance patterns
shown in Fig. 10.
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TABLE 1. Properties of orientation and ocular dominance columns in the monkey striate cortex.
Experimental data were taken from [3,5,6] and unpublished results.

1

The maps of orientation selectivity and ocular dominance are highly repeti-
tive across the retinotopic map (feature hierarchy).

2 Orientation preferences change continuously as a function of cortical loca-
tion except at isolated points (singularities).

3 Orientation preferences change by 180° around singularities in a clockwise
or counterclockwise fashion.

4 Both types of singularities appear in equal numbers.

5 There exist linelike regions (fractures), across which orientation preferences
change rapidly with distance.

6 Below the coherence length, 820140 um in the monkey striate cortex,
iso-orientation regions are organized as parallel slabs which start and end
at singularities.

7 Slab orientations and orientation preferences are at most weakly correlated.

8 On a larger scale (above 820 um) the pattern of orientation preferences is

characterized by an incoherent superposition of waves with similar spatial
frequency but arbitrary direction of their wave vector.

9 Orientation preferences are correlated over small distances (below 200 pm
in the monkey striate cortex), tend to be anticorrelated at an intermediate
distance (300 um), and are uncorrelated on a global scale (above 820 pm).

10 Ocular dominance changes continuously as a function of cortical location.

11 The ocular dominance pattern is locally organized into parallel strips,
which sometimes branch and terminate.

12 Iso-orientation slabs often cross the borders of ocular dominance bands at
approximately right angles.

13 The singularities tend to align with the center of the ocular dominance
bands.

(g.), and ocular dominance (z.). If g, is zero, then the
units are unspecific for orientation, and the larger g, be-
comes, the sharper the units are tuned. “Binocular”
units are characterized by z, =0, units dominated by one
eye by z,70. These properties are encoded by the five-
dimensional feature vector

w,=(x.,y,,q,c08(2¢,),q,sin(2¢,),z,) , (1)

where the orientation coordinates are given in their
Cartesian forms (see [28]). The feature vectors w,, as a

Vs

vV A feature space

> >V,

? .
+ : cortical surface

N Lt
— >T,

FIG. 2. The problem of dimension reduction. The coordi-
nates v, and v, describing the position of a stimulus in visual
space are plotted along the x and y axes, the coordinate vs
describing ocular dominance by the z axis. The coordinates v;
and v, describing orientation selectivity are suppressed to allow
for visualization.

function of unit locations r, describe the spatial pattern of
feature preference and selectivity, i.e., the cortical map.

The stimuli which drive the formation of the cortical
map are described by a pattern vector which is of the
same dimensionality as w,. Its components

v=(x,y,q cos(2¢),q sin(2¢),z) (2)

correspond to the stimulus properties ‘“‘position in the
visual field” (x,y), “orientation” ¢, pattern ellipticity g,
and the distribution of activity between both eyes z.
q =0 corresponds to circular stimuli and g >0 to elongat-
ed patterns. z=0 is to be interpreted as a ‘“‘binocular”
stimulus, while z#0 corresponds to more ‘“‘monocular”
stimuli.

Since only little is known about the probability with
which certain feature combinations v are present in the
afferent patterns that drive the developmental process, we
decided to use an ‘‘unbiased” probability distribution

unit ¥

neighborhood
function h(¥,3)

pattern vector

network layer

FIG. 3. The neural network model.
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P(v) and drew pattern vectors independently and with
equal probability from the manifold

V=_{vlx,y €[0,d],6 E[0,7],g{qpa, |2|{zp} >, 3

i.e., all stimuli characterized by ¢q and |z| smaller than a
given value were chosen equally often.

Pattern formation is described by the SOFM algorithm
which was introduced by Kohonen [13,14] to describe as-
pects of the input driven self-organization in the cerebral
cortex. (For a biological plausible derivation as well as
for a more detailed interpretation of this algorithm see
[25].) The algorithm is discrete in space and time. At
each time step a pattern vector v is chosen at random
from a given set {v} with probability P(v). Then the unit
s, whose feature vector wy is closest to the input pattern
v, is selected:

$= min |v—w,| 4)
r
and the feature vectors in the network layer are changed
according to
w (t+1)=w/(t)+e(t)h(r,s,t)[v—w(t)], (5)

where h(r,s,t), the neighborhood function, is usually
given by
(rl—s1)2 (72—52)2

h(r,s,t)= — — . (6)
TP T ob)

The SOFM algorithm is a simple mathematical formu-
lation of a competitive learning network with the addi-
tional feature that spatially neighboring units cooperate
in the learning process. A pattern vector v induces a lo-
calized “‘excitation” h(r,s,¢), which is assumed to be a
continuous region in the network layer. Since the SOFM
algorithm was designed to describe processes on a time
scale that is a factor of 10® longer than the time scale of
the excitation dynamics, the excitation dynamics is not
explicitly modeled. (For a neural implementation see
[30].) The receptive field properties of the units are then
changed by (5) proportional to their “excitation” (6) ac-
cording to a Hebb-type learning rule with multiplicative
constraints.

Thus, the developmental process is modeled as a par-
ticular realization of a Markov process whose states are
the possible sets {w_] of feature vectors and whose transi-
tions are triggered by the pattern vectors. The Markov
assumption should be a good approximation for the bio-
logical system, because the time scale of cortical map for-
mation (several days to several months) is much larger
than the time scale on which correlations between subse-
quent activity patterns may exist (milliseconds to
seconds).

C. Mathematical properties

It is known that the SOFM algorithm generates a
“structured representation,” a mapping of the multidi-
mensional input space onto the two-dimensional discrete
lattice. Kohonen and others [25-27] showed that the
vectors asymptotically settle to equilibrium values gen-
erating a map which (i) represents most faithfully those

7573
dimensions of feature space along which the standard de-
viation

f(v,- —{v;)?P(v)dv

i [ Pvidv

1

(7

is largest, (ii) tries to preserve continuity, such that (me-
trically) similar patterns are mapped onto neighboring
points in the network layer, and (iii) reflects inhomo-
geneities in the probability density P(v) such that regions
with high P(v) are mapped onto larger domains of the
network layer. The quantities T; provide us with a set of
order parameters as we will see below.

We consider a network A consisting of N XN units
with periodic boundary conditions to avoid edge effects
and we assume periodic boundary conditions for the pat-
tern manifold along x,y coordinates in the input space.
For any given state {w,}, s € 4 of the network the sets

L(s)={v||lv—wy<|v—w,|Vre 4} (8)

render a tesselation of the pattern manifold. Each set
I'(s) is called the tesselation cell of unit s, and it corre-
sponds to the set of all v for which the unit s is the
winner unit according to (4).

Each selection of an input pattern changes the current
state of the map and the corresponding tesselation ac-
cording to (5). The average change in the feature vectors
during one adaptation step is given by the “forces”

E(Aw,|{w ) =¢ [ h(r,s(V))(v—wg,)P(V)dv . (9)

Note, that in general these forces are not conservative
and cannot be derived from a potential function (for de-
tails see [31,32]). A stationary state of the SOFM algo-
rithm is given by the set {w?} of feature vectors for

which all forces vanish:
E(Aw,|{w®})=0, Vr. (10)

If one stationary state has been found other stationary
states can be constructed using symmetry properties of
P(v). Given a linear transformation in feature space 4
with 4 "'=AA4 T, A540 real, and a “translation” vector

t, then a transformed state {%°}

W= Awl+t (11)

of a stationary state {w?} is again stationary if the condi-
tion

|A||P(Av+t)=P(v) (12)

is satisfied (see Appendix A). In the following we will as-
sume that mature cortical maps correspond to the stable
stationary states of the SOFM algorithm.

In order to describe the dynamics of the map it is con-
venient to introduce an ensemble of networks, each ele-
ment of which is characterized by its own set {w,}, 7 € 4,
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of feature vectors, and describe this ensemble by a time-
dependent distribution function S({w,},#). Since the
pattern vectors are chosen randomly the time evolution
of the network is a particular realization of a Markov
process and the distribution function is transformed ac-

ofwilliwi)=% [ TI8w.—|

and where n denotes the dimensionality of the input
space.

If € is sufficiently small, and if the network is already in
the vicinity of a stationary state, which is characterized
by a distribution function S({w,},#) sufficiently peaked
around the expectation values of {{w,)], then Eq. (13)
can be expanded around the stationary state. Then the
learning dynamics can be described by a Fokker-Planck
equation

d

1
;a,S({ur},t)-—— 2 —;—Bpmq,,uq,,S({u,},t)
p.m,q,n pm
+= 3 oStfud,0) (15)
5 maqn s
2 man P dup, du

where u,=w,—w? and where the origin of S(.,7) has
been shifted to the stationary state {wC}. B are the
components of a matrix given by

pmqn

OV pm ({we})

dwg,

(16)

B = ,
prmar fw,] = (w0]

and the quantities V and D, ., are the expectation
values (Aw,,, ) [cf. ] and (Aw,,, Aw,., ) for one adap-
tation step, respectively.

This formulation of the learning dynamics near station-
ary states is derived in detail in [26]. Equations (15) and
(16) will serve as a starting point for all subsequent calcu-
lations.

The quantities B, 4, and D, , are functionals of the
probability distribution P(v) and of the tesselation of the
pattern manifold induced by {w°]. If B+B7 is a
positive-definite matrix, the stationary state under con-
sideration is stable and the eigenvalues of B, , deter-
mine the time constants of the relaxation of fluctuations.
The size of the statistical fluctuations that are present for
nonvanishing step size € are determined by B and D and
are given by

(g, ) =€e[(B+B")7'D]

rm,sn *

IV. MATHEMATICAL ANALYSIS OF MAP FORMATION

For the pattern manifold given by (3) and any neigh-
borhood function A (r,s,?) monotonously decreasing with
[r—s|, a set of stationary states is given by

d
x)=-—r, y(r)zﬁrz’ ‘19: s Zp (18)
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cording to the Chapman-Kolrnogoroﬁ’ equation,

Stw. e+ D= [Q({w}|{w.}S({w Hd" v, (13)

where the transition probability Q({w_ }|{w.}) is given by

wyteh(r,s,t)[v—w.(t)]})P(v)dv (14)

[

and by all states, which result from (18) by translations
r—r+a, reflections r;,— —r;, and rotations by multiples
of 7 in the x,y plane. The magnification factor of the
mapping is d/N. These states correspond to a topo-
graphic representation of visual space, i.e., a retinotopic
projection, where the “excess dimensions” w3, w., and
w5 are suppressed by the map.

Due to the invariance under translation of the proba-
bility distribution (3) and the stationary state (18), one
can simplify Eq. (15) if one represents the distribution
function in terms of the Fourier modes

~ 1 .
uk=—1\;2exp(zkr)ur . (19
T

of u,, where k is a two-dimensional wave vector in the
network layer. For the biological application the range
of the neighborhood function (6) must be large compared
to the spacing of the lattice, i.e., 1 <<0,,0,, <<N. In-
serting (19) into (15) one then obtains

1 a &/ A
—_—— ’t n
c o uk, EB e [S(uk )uk ]
~ 3?8 (fy,1)
+1e3¥ D, (K)—/——, (20)
mon OUy,, Uy,

where the matrices B and D are given by (see Appendix B
for their derivation)

o 1 J/]l] 2
B:—IV— Oh10p2 1 KBCXP - 4 kx
i
X exp —Tkyz 2n
and
2 2
d? Ohi Ih2, 5
QZFWZU%JIU%ZKDeXP __z—kf ¢ T ky
(22)

The matrices Kz and K;, depend on the probability dis-
tribution P(v). For a homogeneous probability distribu-
tion (3) these matrices are given by
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1—lohk?  Lojik.k, 0 0
N?T?
— 2
Kp= 0 0 yp k 0
N’T}
0 0 d24k2
0 0 0
and
Lo ki+L tohohkk, O 0
%U%zlaizkxky %Utzkyz_"% 0 0
TiN?
KD = 0 d2
T3N?
0 0 pE
0 0 0

where T, =T,=q,,,/2 and Ts=z,,, /V3.
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0 (23)

(24)

T2N?
d2

We now can perform a stability analysis of the stationary state (18). The eigenvalues of the matrix B, which corre-

spond to eigenmodes within the x-x, plane are given by

1
ABIZFTrohlahz 1_(1"%0%1"3_%0%.2]‘3)3’(13
2 2
1 T hi1 Oh2
A,BZ:—}FWU},[O'},Z l—exp _Tkxz exp —'Tkyz

2 2
o g
“‘iflkflexp y—-—ﬁ%kg

’

4

(25)

The eigenvalues are positive except for k=0, where the eigenvalues vanish. Hence, the stationary state is stable under
fluctuations of feature vectors from their stationary values parallel to the x,-x, plane except for translations, which
transform one stationary state into the other. The instability at k=0 is a result of the translation invariance of the sta-
tionary state.

The eigenvalues of the matrix B, which correspond to eigenmodes perpendicular to the x,-x, plane are given by

2

22
] _me
4

“k2exp

Agi 3 1— exp , 1E€{3,4,5} . (26)

"‘U—%ZkZ]
4 Yy

1
=70, 0
N h1Y h2 d2

If the quantities 7; are sufficiently small, these eigen-
values are positive for all k and the topographic map (18)
is stable. If, however, the T,’s increase there exists a
threshold
T =1y d .

thres = & ewmm(ahl,ahz) (27)
at which the eigenvalues for the set of modes character-
ized by

k% =2/0, if 0, =0,,,

kd=+2/0,,, k°= (28)

y 0 if0h1<0h2

become negative. Accordingly, the stationary state, the
topographic map, becomes unstable, the system under-

[

goes a phase transition, and the network folds into
feature space as shown in Fig. 4.

The quantities T;, i € {3,4,5}, which characterize the
set of input patterns, assume the role of order parame-
ters. Small values of the order parameters correspond to
a set of input patterns, where the patterns are similar
with respect to the features orientation and ocularity. In
this regime a stable column system does not form. Only
if the order parameters exceed a certain critical value,
i.e., if the presented input patterns are sufficiently dis-
similar with regard to the features v, v,, or vs, are ocu-
larity and orientation represented in the network and a
stable column system formed. The critical value is pro-
portional to the range of the neighborhood function in
the network layer along its minor axis, projected back to
feature space.
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FIG. 4. A typical solution of the map problem (Fig. 2) found
by the SOFM algorithm. The locations of the pattern vectors
which are mapped to the units in the network are indicated by
the intersections of a grid in feature space. Only every fourth
vector is presented. The data was taken from a small region of
the map shown in Fig. 10.

V. SPATIAL STRUCTURE OF MAPS
A. Maps below threshold

Below threshold, the stationary state corresponds to a
homogeneous and topographic representation of visual
space, where all the units respond equally to stimuli from
either eye (z, =0) and to elongated stimuli of all orienta-
tions (g, =0). Fluctuations around the stationary state,
however, are present for finite learning step size €. These
fluctuations lead to regions in the map that temporarily
acquire selectivity for certain oriented stimuli and a
biased response to patterns presented to the different eyes
and they lead to the temporary formation of column sys-
tems.

The size of the statistical fluctuations around the sta-
tionary state can be determined by inserting the correla-
tion matrix

Coron(K)={ Ty tiy, ) (29)

into Eq. (20). [Since modes of different wave vector k do
not couple, their amplitudes and phases are uncorrelated.
Therefore {1, 4, » =0 for k#*k '] We obtain

BC+BC)™=ebD , (30)

where 0S /0t has been set to zero.

For 0,70, the matrices D and B do not commute.
Diagonalization of o) given by (30) leads to rather compli-
cated expressions for the diagonal elements ¢ 11 and C,,
as a function of k, which we omit for brevity. The non-
vanishing coefficients émm ,m >2 are given by

, 3
6mm:j"TTanC’hthz
2 2
Th1 Th2
y exp —ka exp —Tkyz
ok Oha N°T;
2 2 mop 24 2
exp —4-kx exp | =k | = P (ky+k;)
(31)
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where T3=T,=q,,./2 and Ts=z,,/V'3 and qpar and
Zp,,, are defined in (3).

For isotropic neighborhood functions (0 ,,=0,,=0})
the matrices D and B commute and it is convenient to
transform Eq. (30) to the eigenbasis of D and B given by

e;=N{k.e +kye,} ,
e;=N{k,e,—k,e} , (32)
e;=e;, €,=e;, es=e;,

where N is a suitable normalization constant. We denote
the transformed correlation matrix by Q . The mean-
square amplitudes of fluctuations are then given by

2
o
e (3+0}k?exp —-sz
C'“=21—4s—7m7% ,
N o?
exp Tkz —1+1k%0}
2
Th
22 exp _Tkzl
Co=de 5 7] ; : (33)
o
exp —k2]—1
2
o
. exp ——hk2‘
6;"m=5ﬂ'T,iaf, . S, m>2,
ﬁkZ — N T’" k2
exp |~ e

where k =|k|. The common eigenvectors of B and ﬁ [see
Eq. (32)] within the x;-x, plane are parallel and perpen-
dicular to the wave vector k, respectively, and corre-
spond to “compression” and ‘“‘shearing” modes of the
network layer.

The mean-square amplitudes of the modes, which de-
scribe fluctuations parallel to the x,-x, plane, are propor-
tional to the learning step € and independent of the order
parameters T,,,m >2. The modes exhibit a 1/k instabili-
ty at k=0 which results from the translational invariance
of the system. For large values of k these fluctuations de-
cay exponentially with |k|2. The compression modes are
“softer” than the shearing modes for all but the smallest
values of k.

Perpendicular to the x,-x, plane P(v) and {w?} lack
translation invariance and fluctuation amplitudes are
finite for k—0. The mean-square amplitudes are propor-
tional to the learning step €. For small values of the or-
der parameters, (31) reduces to a Gaussian function of el-
lipsoidal cross section, which is centered at the origin of
the k plane. The width along its minor and major axes is
given by the inverse of the width of the neighborhood
function along its major and minor axes, respectively. In
this regime fluctuations with long wavelength dominate,
which lead to positive correlations between the feature
values w3, w4, and w s of neighboring regions in the
network layer.

With increasing value of the order parameters the am-
plitudes of modes from two regions characterized by k
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vectors of opposite sign (anisotropic neighborhood func-
tion) or from a ring-shaped region in k space (isotropic
neighborhood function) become larger. Slightly below
the critical value the modes corresponding to the peak
dominate the spatial structure of the maps and lead to
negative spatial correlations between feature values at a
distance of 7/|k °|, where |k °| is the wave number of the
peak. The time constants 7; given by

T(k)=Ag'(k), i>2 (34)

for the relaxation of critical fluctuations diverge propor-
tional to 1/(T; — Tys). Autocorrelation functions have
a sombrero shape. For large k the power spectrum de-
cays exponentially with k2.

To test the analytical solutions described Monte Carlo
simulations have been carried out using a network of
256 X256 units and isotropic neighborhood functions.
The solution Eq. (33) and the numerically obtained power
spectra are shown in Fig. 5. (Note that the mean-square
amplitudes of the modes have been averaged over all
directions of k to obtain a better approximation of the
power spectrum.) Figures 5(a) and 5(b) show the power

) (a) 1 (b)
1 1
.01 .01
.001 .001
.0001 .0001
0.00 0.05 0.10 0.15 0.00 0.05 0.10 0.15

mean-square amplitude

spatial frequency

FIG. 5. Power spectra of fluctuations obtained with an iso-
tropic neighborhood function (o, =5). Solid lines indicate the
analytical solution (33); dots the results of Monte Carlo simula-
tions. Monte Carlo simulations were carried out with a net-
work of size N=d =256. In order to obtain a good approxima-
tion of the power spectrum, the squared Fourier spectrum was
averaged over 40 maps obtained after 50000, 300000, and
600000 iterations for T 45=1.77, 3.81, and 3.99, respectively,
from the “topographic” initial state (18). Additionally, the
squared Fourier spectrum was averaged over all directions of
the k vector. The step size € was 0.02. For this set of parame-
ters the critical values of the order parameters are given by
Tihres =4.12. (a) Power spectrum of the “compression” modes.
(b) Power spectrum of the ‘“shearing” modes. Since the power
spectra of “‘compression” and “shearing” modes are indepen-
dent of T3 4 s only values for T 4 s=1.77 are shown. (c) Power
spectrum of the w,; and w,, modes. Since these modes are de-
generate, only one of them (w,;) is shown. (d) Power spectrum
of the w, s mode.
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spectrum of fluctuations as a function of spatial frequen-
cy for the “compression” and “shearing” modes. There
is good agreement between the analytical solution and the
numerical results except in the vicinity of the 1/k insta-
bility, where the relaxation time diverges, and for very
large values of k, where the numerical accuracy was not
sufficient.

Figures 5(c) and 5(d) present the power spectra of fluc-
tuations of the modes parallel to w3, w,4, and w,s for
different values of T;. There is again good agreement be-
tween the analytical result and the result of the numerical
simulations, except for the parameter regime in the vicin-
ity [(T;— Typres )/ Tinres <5%] of the phase transition,
where the “discreteness” of the network layer comes into
play and where the approximations leading from Eq. (50)
to Eq. (21) are no longer valid. However, the results of
numerical simulations approach the analytical solution in
the limit 0 — o, o/N finite, d /N finite, where the
higher-order terms in the expansion of (50) become less
important.

The corresponding spatial autocorrelation functions
(see Appendix C)

Sii(p)=(uriu(r—p)i>: i>2 (35)

are presented in Fig. 6 for the case i =3,4. (The auto-
correlation function of the other coordinate i =5 has a
similar shape.) The maps were generated with an isotro-
pic neighborhood function. The correlation functions
were again averaged over all directions of p. For very
small values of T; neighboring units in the network have
positively correlated feature values and the length /. of
correlations is given by I, ~V20. If the order parame-
ters approach their critical value the correlation length
increases and the autocorrelation functions become som-
brero shaped. At the critical value feature coordinates
are anticorrelated for units at a distance of A=1.90 and
correlations decay as 1/V/|p|. Since the modes are in-
dependent, all cross-correlation functions vanish.

In the following we will visualize the results of this sec-
tion in a form similar to the experimental data shown in

1.0
_—— 1.77

05 ] 3.99
T 4= Tihres

LA A
VAR

0 40
distance (units of cells)

correlation function
(normalized)

FIG. 6. Autocorrelation functions S3;(p) of the orientation
coordinate w,; as a function of distance |p| obtained with an
isotropic neighborhood function (o, =5). All correlation func-
tions were normalized to S;;(0)=1. Solid lines indicate the
analytical solution (56), dots indicate the results of the Monte
Carlo simulations in Fig. 5. The simulation results were aver-
aged over all directions of p. The dotted line shows the (nor-

malized) autocorrelation function (58) in the limit 75— Ty es-
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Fig. 1. Figure 7(a) shows a snapshot of fluctuations in the ~ The map consists of bright patches containing orientation

orientation coordinates for a small value of the order pa-  selective units [arrow in Fig. 7(a)], which are embedded
rameters 754 and for an isotropic neighborhood func- into larger unselective areas. If T’ 4 is small, neighboring
tion. Orientation preference ¢, of the units r is again units have similar feature values and neighboring patches
coded by color, orientation tuning strength by brightness. have similar colors. If T, , approaches T\, the correla-

(a)

e
::::::::

T
T

H T 58
Jisiiass B

FIG. 7. Snapshot of fluctuations around the stationary state (18). The figure displays an 80X 100 section of a network of size
N=d=512. The parameters of the simulation were €=0.1, 0, =5, T3 45 =1.24. For this set of parameters the critical value of the
order parameters is T,..s =4.12. The snapshot was obtained after 60 000 iterations from the “topographic” initial state (18). (a) Spa-
tial pattern of orientation preference ¢, (color) and orientation tuning strength g, (brightness) as a function of location r. (b) Spatial
pattern of ocular dominance values z, (brightness) as a function of location r. Orientation preference, orientation tuning strength,
and ocular dominance values were color coded as described in Fig. 1. (c) Spatial structure of the topographic projection. The figure
displays the locations (x,,,x,,) of receptive field centers in visual space for all units in the network layer. Receptive field centers of
neighboring cells were connected by lines.
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tion length increases, but units which are a certain dis-
tance apart tend to have anticorrelated feature values.
This gives the map a more “colorful” appearance.

Figure 7(b) shows a snapshot of the corresponding fluc-
tuations in the ocular dominance values. The values z,
are coded by brightness, where white and black denote
left eye and right eye preference, respectively. Again the
map seems patchy and “monocular” islands (black or
white) are embedded into large “binocular” areas (gray).

A snapshot of the structure of the retinotopic projec-
tion is depicted in Fig. 7(c). The diagram presents the lo-
cations (x.;,x,,) of receptive field centers in visual space
for all cells in the network layer. Each location is
represented by a dot; receptive field centers of neighbor-
ing cells are connected by lines. An ideal topographic
projection of visual space to the network layer would give
rise to a square lattice with homogeneous mesh size, since
the receptive field centroids of neighboring units are
equally spaced. The nearly perfect grid demonstrates
that the representation of visual space is topographic as
predicted by Eq. (18); the wavelike patterns are the result
of fluctuations in the “compression” modes. (The ampli-
tude of the “shearing” modes is much smaller.) Since all
modes are independent, there exist no correlations be-
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tween the spatial patterns of retinotopy, orientation selec-
tivity, and ocular dominance.

B. Maps above threshold

Above the critical value of the order parameters a
stable pattern of orientation and ocular dominance is
formed. Since there exists no general theory of stationary
states of the self-organizing-feature-map algorithm in this
regime, the investigation of the spatial pattern of topog-
raphy, orientation selectivity, and ocular dominance has
to rely on numerical simulations. In order to describe
these patterns and to compare them with experimental
data we will consider the following set of functions and
transformations:

Fourier transforms:

y;= 3 explikrw,; ;
T
correlation functions:
Sij(p): ( WriW(r+p)j )r 5

feature functions:

{wrj} = {xnyr’ q,,¢,,z,,q,cos¢,,q,sin¢,,qr(cos¢r+isinci),)} >

feature gradients:

- 2
V.| =00, +1,m) T W0 WG 410~ W0y

Gabor transforms:

( "2
gj(k,r)=(21m§)*1/4fd2r'w,:jexp -

Fourier transforms and correlation functions are the nat-
ural quantities from a theoretical point of view. Feature
functions and feature gradients are traditionally used to
display the experimental data. Gabor transforms have
been introduced to objectively find, classify, and count
(local) modules of cortical organization (e.g., regions con-
taining singularities or parallel iso-orientation slabs).
Since the regime T, > T, generates the typical spatial
patterns of mature cortical maps, we will compare model
predictions with experimental data as we go along.

1. Fourier transforms and correlation functions

The modes which become unstable at T, ., are the
modes which have the strongest growth rate for
T; > Ty,s- Slightly above threshold, these modes dom-
inate the spatial pattern of orientation selectivity and
ocular dominance. Figure 8 shows the Fourier transform
of the complex orientation coordinate #,, +i#,, for pat-
terns generated with an isotropic [Fig. 8(a)] and an aniso-
tropic [Fig. 8(b)] neighborhood function. The origin of
the k plane is marked by a dot. Each pixel corresponds
to a single mode k and its brightness indicates the mean-

]2}1/2;

r—r’) .., 1
40? +ik(r 2r) . (36)

square amplitude |G, |? of the mode k. For an isotropic
neighborhood function the orientation map is character-
ized by wave vectors from a ring-shaped region in the
Fourier domain [Fig. 8(a)], which becomes eccentric with
increasing 0 ,,/0,, [Fig. 8(b)] until the ring dissolves into
two separate groups of modes. Phases (not shown) seem
to be random. The wavelength A, associated with the
modes with high energy determines the average period of
the orientation columns which is similar along every
direction in the network. The width of the peak indicates
the typical length (820 um in the monkey striate cortex)
over which orientation preferences are correlated. Figure
8(c) shows a typical Fourier spectrum of the spatial pat-
tern of orientation selectivity in the macaque. The orien-
tation map of the macaque has a slightly eccentric
Fourier spectrum, which indicates a slight tendency of
the iso-orientation slabs to align with the area 17-18 bor-
der. Since the spectrum is nearly round, a power spec-
trum could be approximated by averaging over all direc-
tions of the k vector. Theoretical predictions and experi-
mental data are overlaid in Fig. 8(d) after suitable nor-
malization. The comparison shows that the model is able
to reproduce the line shape in the experimentally deter-
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mined power spectrum. Thus, the pattern of orientation
columns is characterized by local correlation and global
disorder.

As a result of the line-shaped power spectrum, the au-
tocorrelation functions of the orientation and ocular
dominance coordinates have a sombrero shape. If
0,1 =0, the autocorrelation functions have rotational
symmetry, and at a separation of about A,/2 the pre-
ferred orientations ¢ are more likely to be orthogonal.
For o0,,70,, these functions essentially consist of a cen-
tral “bar” of positive values accompanied by two “lobes”
of negative values. The cross-correlation functions are
zero in both cases. Figure 9 shows the correlation func-
tions S;;,i,j € (3,4} of the spatial pattern of orientation
selectivity in adult monkeys in comparison with simula-
tion results obtained for o,,=o,,. The model predicts
the shape of the correlation functions well for S;, and Sy,
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but deviates from S3;. The difference in the amplitude of
S5 and S, in the experimental data, however, is likely to
be an artifact of the finite map size. Differences in ampli-
tude of the correlation functions obtained from seven an-
imals did not show any consistent trend.

The fact that the patterns of orientation preference and
ocular dominance have a simple description in the
Fourier domain might also explain the success of most
models of cortical map development [10-24]. Isotropic
spectra are the result of the invariance of Eq. (20)
(0,1=0},) under rotation with respect to cortical coor-
dinates r; global disorder, the finite coherence length, and
singularities are a consequence of their invariance under
translation. Any model which assumes invariance under
translation and rotation with respect to cortical coordi-
nates and, additionally, is characterized by a typical spa-
tial frequency (or a typical length) is very likely to gen-
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FIG. 8. Complex Fourier transforms 3 exp(ikr)g,(cos$,+i sing,) of the spatial pattern of orientation preference and correspond-
ing power spectra. (a) Fourier transform of the pattern of orientation of a typical stationary state of the SOFM algorithm generated
for T4 5> Tuwes using an isotropic neighborhood function. Parameters of the simulation were N=d =512, €=0.02, o,=5,
T, ,=10.24, and T5=28.87. For this set of parameters the critical value of the order parameters is Ty =4.12. The figure was ob-
tained after 9X 107 iterations from the “topographic” initial state (18). (b) Fourier transform of the pattern of orientation selectivity
for a typical stationary state of the SOFM algorithm generated for T} 45> Ty USing an anisotropic neighborhood function. The
parameters of the simulation were N=d =512, €=0.02, 0, =5, 04,=17.5, T3 4=10.24, and Ts=28.87; the critical value of the order
parameters is Ty, =4.12. The figure was obtained after 9X 107 iterations from the “topographic” initial state (18). (c) Fourier
transform of the pattern of orientation selectivity obtained from a 6 X8 mm? patch of macaque striate cortex. (d) Power spectrum of
(a) and (c) obtained by averaging over all directions of the k vector. Mean peak amplitude and peak frequency were normalized to 1.

Unit frequency corresponds to 1.38/mm for the experimental data.
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FIG. 9. Correlation functions S3;(p), S4(p), and S (p) as a
function of cortical location p for the experimental data shown
in Fig. 8(c) (dotted lines) and simulation results described in Fig.
8(a) (solid lines). The correlation functions were averaged over
all directions of p. The labels Si;, S44, and S, refer to the dot-
ted lines. The sombrero-shaped solid line displays the simula-
tion result for S3; and Sy, which have identical graphs; the hor-
izontal line displays S;,.

erate reasonable patterns. These principles—isotropy,
homogeneity, and periodicity—alone, however, cannot
account for the recently found correlations between
orientation preference and ocular dominance, properties
11-13 in Table I of Sec. II.

2. Structure of the patterns in the spatial domain

In the following we will again visualize the simulation
results in a form similar to the experimental data of Fig.
1. Figure 10(a) shows the spatial pattern of orientation
preference and orientation tuning strength generated
above threshold using an isotropic neighborhood func-
tion. Color and brightness again denote orientation
preference and tuning strength, respectively. The pattern
shows the following qualitative features of the experimen-
tal data [compare, e.g., Fig. 10(a) with Fig. 1(a) or Fig.
11(b) with Fig. 11(a)]. (Figure 11 is located next to Fig.
1.)

(1) Orientation preference changes continuously as a
function of cortical location except for isolated points
(singularities).

(2) Iso-orientation regions are organized as elongated,
parallel patches which start and end at the singularities
[see arrow 1 in Fig. 10(a)].

(3) The singularities have a vorticity of +}, and both
types of singularities appear in equal numbers. For the
numerical simulation presented in Fig. 10(a) the ratio of
+4 to —1 singularities was 0.98 (855 vortices total); six
singularities had a vorticity of +1.

(4) All preferred orientations are represented equally in
the first approximation. This is a consequence of the in-
variance of the pattern manifold (3) under rotations
within the v;-v, plane.

The existence of singularities (and of global disorder)
can be understood from an entropy argument. Since
dimensien-reducing maps- whish- axhibit these features-
have increased entropy, they are generated with higher
probability.

Patterns generated with anisotropic neighborhood
functions exhibit the same features, except that the iso-
orientation slabs are now aligned with the major axis of
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the neighborhood function. Anisotropic orientation-
column systems have not been observed in the macaque
but have been observed in areas 17 and 18 of the cat
[33,4]. In the cat the iso-orientation slabs align with the
direction of extended horizontal connections. This is
consistent with the assumptions underlying the self-
organizing-feature-map algorithm [25], because an aniso-
tropic neighborhood function is thought to reflect an un-
derlying anisotropic lateral connectivity scheme, where
the directions of the extended lateral connections coin-
cide with the major axis of A(r,s).

The spatial pattern of ocular dominance exhibits alter-
nating stripelike regions, which are each dominated by
one particular eye. For o,,=0,, the ocular dominance
pattern is organized into parallel stripes only locally [Fig.
10(b)] and the emerging pattern is more irregular than
the ocular dominance pattern of the macaque. A better
fit can be obtained for anisotropic neighborhood func-
tions, where the stripes align and the pattern closely
resembles the experimental data. Unfortunately, it is not
possible to fit the degree of “anisotropy” of both the
macaque’s orientation and ocular-dominance column sys-
tem without introducing different neighborhood func-
tions for different coordinates, i.e., replacing h(r,s,t) by
{h;(r,s,t)}. In the case of sufficiently “anisotropic”
neighborhood functions the pattern shows the following
qualitative features of the experimental data [compare
Fig. 11(b) with Fig. 11(a)].

(i) Ocular dominance changes continuously as a func-
tion of cortical location.

(i) The ocular dominance pattern is locally organized
into parallel stripes, which sometimes branch and run
into dead ends.

(iii) The spatial pattern of ocular dominance is charac-
terized by a power spectrum which consists of two
groups of modes with opposite wave vectors.

(iv) Monocular regions cover a larger total area than
binocular regions.

Properties 1 and 2 are satisfied by patterns generated
with isotropic as well as with anisotropic neighborhood
functions.

Note that patterns of orientation selectivity and ocular
dominance are rather complicated in the spatial domain.
This indicates that Fourier space [20] should be preferred
over the spatial domain (see [34] for an overview of mod-
els) in order to parametrize these patterns. In fact the
properties 1-10 (Table I of Sec. II) of the individual
column systems emerge if amplitudes and phases are ran-
domly assigned to Fourier modes located in a ring-shaped
or eccentric region in Fourier space [20]. Pattern models
which are based on colored noise, however, cannot ac-
count for correlations between topography, orientation
selectivity, and ocular dominance, properties 11-13 of
Table I.

3. Correlations between topography,
orientation selectivity, and ocular dominance

In contrast to maps generated below the critical value
of the order parameter, the spatial patterns of orientation
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selectivity, ocular dominance, and topography are strong-
ly correlated. Figure 11 shows the spatial pattern of
orientation selectivity (color and brightness) overlayed by
the borders of the ocular dominance bands (white lines)
for the result of numerical simulations as well as for ex-

(a)

perimental data. In both cases the singularities of the
orientation map lie in the centers of the ocular domi-
nance bands and, consequently, the iso-orientation slabs
intersect ocular dominance bands at steep angles (see ar-

(b)

i3
K0S
(RSN
BRSO
OSSR
Wit

FIG. 10. Typical stationary state of the self-organizing feature maps generated for T 4 5 > Ty Using an isotropic neighborhood
function. The figure displays a 110X 150 section of a network of size N=d =512. The parameters of the simulation are given in Fig.
8(a). (a) Spatial pattern of orientation preference ¢, (color) and orientation tuning strength g, (brightness) as a function of location r.
Arrows indicate singularities (arrow 1) and linear regions (arrow 2). (b) Spatial pattern of ocular dominance values z, (brightness) as
a function of location r. (c) Spatial structure of the topographic projection. The components of the feature vectors were coded as de-

scribed in Fig. 7.
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These correlations can be addressed quantitatively by a
Gabor analysis. If the radius o, of the Gaussian function
in the Gabor filter (36) is smaller than the ‘“coherence
length,” which is proportional to the inverse width of the
peak in the power-spectrum, the Gabor transform of any
of the feature components w.;, wy, and w.s typically
consist of two localized regions of high energy in the k
plane (Fig. 12). The length |k| of the k vector, which
corresponds to the centroids of these regions, fluctuates
around the characteristic wave number 27 /A of this pat-
tern; its direction gives the normal to the ocular domi-
nance bands and iso-orientation slabs at the location r,
where the Gabor transform was performed.

We define the quantities

si=ly— ¢,
52:|‘/’5"%(‘/’3+¢4)‘ >

where i3, ¥, and 15 denote the angle between the vectors
k3-ks and a reference axis for the orientation and ocular
dominance coordinates w,; —w,s, respectively. If s;=0°
and s,~90° then iso-orientation slabs are parallel and
run perpendicular to the ocular dominance stripes and
the pattern locally resembles the “ice-cube” architecture
proposed by Hubel and Wiesel [1] (“linear regions”). If
5;=~90°, then the particular regions contain singularities.

Figure 13 shows the number of map locations as a
function of s; and s, for a large number of randomly
selected locations. Regions where orientation preferences
are organized as parallel slabs (back row) are the most
abundant in the experimental data as well as in the simu-
lation results. Most of the regions appear on the right
(s;=0° and s, ~90°) where iso-orientation slabs intersect
ocular dominance bands at nearly right angles. Regions
containing singularities (s; =90°, s, arbitrary) are less
abundant.

There is also a strong correlation between regions with
low orientation tuning strength [dark areas in Fig. 10(a)]
and the vortices and other areas of high magnitude of the
orientation gradient. Since vortices are correlated with
the centers of ocular dominance stripes and hyper-
columnlike regions with their borders, the monocular re-
gions are characterized by lower orientation tuning
strength on the average.
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FIG. 12. Gabor transform of w,;, i >2 at a typical location in
the pattern described in Fig. 10 for o, =6. Black regions indi-

cate modes with high energy.

In conclusion, patterns generated above the critical
value of the order parameters show a lateral segregation
into two different regions: (i) binocular regions with
linear changes in orientation preferences, where iso-
orientation slabs run perpendicular to the ocular domi-
nance bands, and (ii) monocular regions with low orienta-
tion tuning strength, which contain the singularities of
the orientation map.

The stable representation of orientation selectivity and
ocular dominance above the critical value of the order
parameter also introduces periodic distortions into the
topographic projection [Fig. 10(c)] and gives rise to re-
gions where the receptive field centers of neighboring
cells coincide or reverse order. The reason for these dis-
tortions as well as for the correlations between orienta-
tion selectivity and ocular dominance becomes evident
from Fig. 4. In order to continuously represent the five-
dimensional feature space on the two-dimensional sur-

data

® parallel slabs

900’/Sl

singularities

percentage of locations
(=] N~ -~ =} oo

o° s, 90°
| ————— L

FIG. 13. Number of map locations as a function of s, and s, (see text). (a) Analysis of the stationary state of the SOFM algorithm
displayed in Fig. 10. The total number of map locations was 1500, o, /A,=0.2. (b) Analysis of experimental data (taken from [3,5,6])
obtained from four adult monkeys. The total number of map locations was 3500, o, /A,=0.2. o, was 150 um, the typical radius of
an interneuron dendritic tree located in the superficial layers of the monkey striate cortex [35].
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face, regions of high rate of change along the “position”
axis have to coincide with regions of zero or low rate of
change along the orthogonal “ocular dominance” (and
‘“orientation”) axes (crests and troughs). Likewise, re-
gions of high rate of change in the “ocular dominance”
(and ‘“‘orientation”) axes (steep slopes) coincide with re-
gions of zero or low rate of change along the “position”
axis. Other correlations arise at points where the map ex-
hibits maximal changes in two features. For example, for
retinotopic location (v,) and ocular dominance (vs) to
vary at a maximal rate the surface in Fig. 4 must be
parallel to the (v;,vs) plane. Obviously, at such points
the directions of maximal change of retinotopic location
and ocular dominance are orthogonal on the surface.

In order to compare model predictions with experi-
mental data the surface in the five-dimensional feature
space has to be projected into the three-dimensional sub-
space spanned by orientation preferences (v; and v,4) and
ocular dominance (vs). This projection cannot be visual-
ized easily (the surface completely fills the space inter-
secting itself multiple times) but the same line of reason-
ing applies: (i) regions where orientation preferences
change quickly correlate with regions where ocular domi-
nance changes slowly, and (ii) in regions where orienta-
tion preferences change most rapidly along one direction,
ocular dominance has to change most rapidly along the
orthogonal direction. Consequently we expect discon-
tinuities of the orientation map to be located in the
centers of the ocular dominance bands and iso-
orientation slabs to intersect ocular dominance bands at
steep angles.

There is another way to look at these correlations.
These correlations emerge because for a constant proba-
bility distribution P(v), the SOFM algorithm distributes
the units of the network in feature space such that the
distance between neighboring units is approximately the
same. Since this distance corresponds to the magnitude
of the rate of change |V w,| of the feature vector w,, it
follows that a high rate of change in one component must
be compensated by a small rate of change in the other
components.

4. The regime of large T;

Our simulations show that for increasing values of the
order parameters the standard deviation of features
values from their stationary state values {w?} increases
proportional to T}, i > 2, and that the characteristic wave
number k° of the column system decreases. Since Monte
Carlo simulations of a large enough 2D network require
prohibitively much computation time, we have restricted
our analysis of the regime of large order parameters to a
simpler case, the mapping of a rectangle, onto a one-
dimensional “‘chain” of units. The only order parameter
T, is given by q /V'3, where g is half the width of the rec-
tangle. Figure 14 shows the standard deviation
A={[3(w;,—w))*1/N(N—1)}'/? of feature values and
the characteristic wave number as a function of the order
parameter. Above the critical value,
Tipres=Ve (d /N)o,, the standard deviation A increases
linearly with the order parameter, i.e., A=T,+const ex-
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FIG. 14. Standard deviation of features values and charac-
teristic wavelength as a function of the order parameter. Nu-
merical simulations were restricted to the simplest case of a
dimension-reducing mapping, the representation of a rectangle
of length d and width 2¢g by a one-dimensional network of N
units with periodic boundary conditions. Parameters of the
simulation were N=d =8192, o, =20, €=0.02. For this set of
parameters T, =33.0. The coordinates of the two-
dimensional feature vector are denoted by w; and w,. Patterns
were chosen with equal probability from the manifold
V={vlv, €[0,d],|v,| <q}. The filled symbols denote the stan-
dard deviation A as a function of the order parameter after the
system has settled into a stationary state. The open symbols
denote the wavelength corresponding to the peak in the power
spectrum of x,. The solid lines indicate the result of a linear re-
gression to fit the standard deviation A and the characteristic
wavelength as a function of 7', above the critical value.

cept for a small region near the instability. Hence A in-
creases linearly with the width of the rectangle in order
to faithfully represent the additional patterns presented
to the network. The characteristic wavelength at the
critical value is given by 2/0,. Above Ty it also in-
creases proportional to T',, but with different shape.

We consider again the case of the 5D —2D map. If the
T;, i >2 are large enough, the feature hierarchy apparent
in Fig. 10, namely, “global” order in x and y and “local”
order in g, @, and z, breaks down. “Orientation prefer-
ence” or “ocular dominance” now play the role of the
primary stimulus variable. Figures 15(a) and 15(b)
display orientation selectivity and ocular dominance as a
function of unit location r in this parameter regime, re-
spectively. There is only one continuous region for each
interval of preferred orientation and one for each eye, but
each of these regions now contains a representation of a
large part of visual space. Consequently the position map
[Fig. 15(c)] shows multiple representations of visual
space. This demonstrates that hierarchical patterns are
generated by the feature map algorithm only when there
exists a hierarchy in the variances of the set of patterns
along the various feature dimensions (in our example a
hierarchy in the magnitudes of T ,, T34, and T5). The
features with the largest variance become the primary
features (in the case shown in Fig. 10 the positions of re-
ceptive field centroids); the other features become secon-
dary features, which are represented multiple times in the
network layer (in the case shown in Fig. 10 orientation
selectivity and ocular dominance). This property of the
SOFM algorithm is known as the “automatic selection of
feature dimension [25].”
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VI. SUMMARY AND CONCLUSIONS

In this contribution we have investigated an unsuper-
vised learning algorithm, the self-organizing feature map,
which is able to explain the formation of cortical maps in
the primary visual cortex of the macaque. We have
shown that the spatial pattern of orientation and ocular

dominance columns emerges as the result of a global in-
stability of the retinotopic map, when one or several or-
der parameters, which describe properties of the set of in-
put patterns, exceed a critical value T .. The critical
value is proportional to the range of the neighborhood
function along its minor axis, multiplied by the inverse
magnification factor of the retinotopic mapping. Since

(b)

(a)

FIG. 15. Typical stationary state of the self-organizing feature maps generated for T’ 4 5 >> Ty, Using an isotropic neighborhood
function. The figure displays a 192X 256 section of a network of size N=d =256. The parameters of the simulation were e=0.1,
T, ,=1280, and T's=1478. The patterns were obtained after 60 000 iterations starting from random initial conditions. o, was linear-
ly decreased during the simulation from o,(0)=200 to 0,(30000)=20 and then to ¢,(60000)=4. For this set of parameters the
critical value of the order parameters, which depends on o, lies between 663.0 and 3.3. (a) Spatial pattern of orientation preference
&, (color) and orientation tuning strength g, (brightness) as a function of location r. (b) Spatial pattern of ocular dominance values z,
(brightness) as a function of location r. (c) Spatial structure of the topographic projection. The components of the feature vectors
were coded as described in Fig. 7.
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the range of the neighborhood function is thought to be
related to the range of lateral excitatory connections [30],
one might speculate that the range of excitatory connec-
tions must not exceed a certain value in order to allow
column systems to form.

Above, but still near, this critical value the spatial pat-
terns strongly resemble the ocular dominance and orien-
tation columns found in the primary visual cortex of the
macaque. The spatial pattern slightly above threshold is
dominated by the modes which become unstable at T .
The spatial patterns of orientation preference, ocular
dominance, and topography are correlated giving rise to
a lateral segregation of the pattern into binocular regions
with linear changes in orientation preferences, where iso-
orientation slabs run perpendicular to the ocular domi-
nance bands, and monocular regions with low orientation
tuning strength which contain the singularities of the
orientation map. Also a stable representation of more
than two features introduces periodic distortions into the
retinotopic projection. The characteristic wave numbers
of these distortions are predicted to be twice the charac-
teristic wave number of the orientation and ocular domi-
nance columns, respectively. While experimental results
from the primary visual cortex of the macaque seem to
confirm correlations between orientation selectivity and
ocular dominance and between orientation preference
and selectivity, the predicted distortions of the retinoto-
pic projection have not yet been addressed experimentally
and it is still an open question if they are present in the
visual cortex of the macaque.

Does the regime of small values of the order parame-
ters also have biological significance? Before birth and in
very young animals, where the visual system may not be
fully functional, afferent activity patterns corresponding
to lines and contours may not be present. Hence the
afferent patterns would exhibit a weak orientation bias
only and the corresponding order parameters T; , should
be below their critical values. In this case the model
would predict that (i) the orientation preferences in
young monkeys are not correlated with ocular dominance
and (ii) the pattern is not stable but changes in time. The
regime of small T; could also be created artificially by
depriving young animals of input patterns characterized
by large g and z [see Eq. (2)]. In this case the model
would lead to the following prediction. If a young animal
is deprived of either monocular stimuli or patterns with a
strong orientation bias, then stable column systems
should not form. Both column systems should be un-
correlated; they should fluctuate and randomly change
the spatial structure in time.
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APPENDIX A: CONSTRUCTION
OF STATIONARY STATES

Let A be a linear transformation and t a translation in
feature space, respectively, and define the quantities ¥
and W, by

Vv=Ad4v—+t,
W, =Adw, +t. (A1)
If A '=AA4 T, A0 real, then
s= mrin!v—ﬁ"r|= mrin |A(v—w,)]
= mrin|v—w,| . (A2)
Hence we obtain for the forces E(AW,|{W,})
E(AW, (%, })=¢ [ h(r,s(v))T—W,,)P(V)d¥
=A-efh(r,s(v))(v—ws(v))
XP(Av+t)||A4|dv . (A3)
If P(v)=||A||P(Av+t), then
E(AW,|{%,})=A4-E(Aw,[{w.}) . (A4)
Hence, if Eq. (10) is fulfilled, then
E(Aw, |{%w,.})=0. (A5)

APPENDIX B: DERIVATION OF EXPRESSIONS
FOR BAND D

1. Derivation of an expression for B

The “volume” P, and the coordinates 7,,, of the “cen-
troid” of the tesselation cell of unit r are given by

(B1)

respectively. Inserting (9) and (B1) into (16) and perform-
ing the differentiation we obtain
WV pm

pmaqn
dwg,

0P,
:2h(p,s)awq (Vg —Wpm)
S n

vsm

Jw

qn

—&8(pm,qn) |, (B2)

— 3 h(p,s)P,
S
which has to be evaluated for the stationary state {w?}
given by Eq. (18).

For the stationary state (18) the relations P,=1/N?
and v,,, =w,,, hold. Inserting these into (B2), and per-
forming the Fourier transform with respect to differences
between unit labels, we obtain

B —_— O — —_
(k)= 5 H10) [80m,m) =N S
Y[V A, 2F (B3)
Jw
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where /(k) denotes the Fourier transform

> explik(p—s)]hal(
(p—s)

R)=-+

4
N (B4)

p,s)

of the neighborhood function (6) and where we made use
of the fact that the tesselation of the pattern manifold in-
duced by {w?} is translation invariant.
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and 9V, /0wg,. The “volume” and the “centroid” of a
tesselation cell I';, change only under shifts dw, of feature
vectors corresponding to this cell and its neighbors. Fig-
ure 16 illustrates the calculation of these changes. If we
neglect contributions of second or higher order in dw,
(parts of the hatched areas in Fig. 16) we obtain

In the limit 8[(p,+1)p,, —8[(p,—1)p,, ]
1<<0),,04,<<N relation (B4) can be replaced by the lipy P2 qqu]_S[ b _1;2 142
continuous Fourier transform and we get oP 8[p1(p2+1),919,]1—8[p1(p2—1),9,4;]
P _
—= 0
2 2 d 2dN
1 Ohi h2 W
ﬁ(k)=ﬁ 410 12€XD —ka e Tkj 4 g
(B5) (B6)
Next we have to evaluate the derivatives aﬁ,/awq,, and
I
28(p1p2,9192)+4[8((py —1)p2,414,) +8((p; +1)p2,4195)]
—5[8(pi(p;—1),419,)+8(p,(p;+1),9:9,)]
$8(p1P2,919,) %[5((1’1 1)p2,4192)+8((p; +1)p,,9,4,)]
+%[5(171(p2— ),419,)+8(p,(p,+1),9,9,)]
q atN2 ; th
pa, 8(p1p2,q192) =~ -5 [8((p1 —1)p2,4192)+8((p1 + 1), q14,)]
v,
= 2 A2
Jw _ GpalV _
am g [8(p1(p2—1),9,9,)+8(p,(p,+1),9:9,)]
qpaN2 2 N
42 8(Pll’zsqlqz)_ d2 [8((py—1)p;,9,9,)+8((p; +1)p;y,q,9,)]
q t 2
al
: [(8(pi(p;—1),419,)+8(p(p, +1),9,9,)]
patN2 2 NZ
> 5(P1P2,¢11¢12)- 2 [8((p;—1)p;3,919,)+8((py+1)py,914,)]
3d 3d
2guV?
Z pa
342 [8(p1(p2—1),4,4,)+8(py(p;+1),9:14,)] (B7)

All “centroid” changes vanish for mn. The fourier transformation of Egs. (B6) and (B7), and insertion of (B6), (B7),

and (BS5) into Eq. (B3) lead to

2 2

o o
B (k)= —5 70,10, |1—(2+ L cosk, + Lo}k, sink, — — ¢ cosk, Jexp —f:l—kf exp[——“#k},2
) 0%.1 P
Bn(k)z—3ﬂah10h2(%0%1kxsinky)exp ———4——kf exp —4——kf
A o} Tha
B21(k)=F7rahlohz( ahzk sink, Jexp —————k2 exp 2 k),2 ,

5 ) (B8)
o U
By (k)=—5m0,10,, |1— (241 cosk, + Lo,k sink, — 1 cosk, Jexp —%kﬁ]ex —‘th—z—k},2
By(k)=B(k)=— 1— q"*“ 1—1 cosk, — L cosk Tty L
33 44 37010 h2 —— —(1—4 cosk, — 5 cosk, Jexp —Tkx exp Tky

4Nz} o} 2

ﬁss(k)=—3—1r0hloh2 1— Tpﬁ(l-——cosk — 3 cosk, Jexp —%kﬁ ex —%kyz
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(b)

pattern manifold

2qpy OF 225y

FIG. 16. Change of shape of the tesselation cells corresponding to the stationary state (18) under an infinitesimal shift dw, of the
weight vector w,. (a) Shift parallel to the coordinates v, and v,. The drawing shows a projection of the tesselation onto the v,,v,
plane, where the positions of the weight vectors before and after the shift are indicated by black and white dots, respectively. The
dotted areas indicate volume changes linear in dw,; they contribute to Egs. (B6) and (B7). The hatched areas give an upper bound of
corrections of O(|dw,|?) to these volume changes; they are added to or subtracted from the dotted areas to keep expressions (B6) and
(B7) simple. (b) Shift parallel to the coordinates v; to vs. The drawing shows a projection of the tesselation onto the v,,v; plane
where i € {3,4,5]. The two horizontal lines indicate the borders of the pattern manifold. Hatched and dotted areas again indicate
volume changes of first and higher order in dw,, respectively. Note, that a calculation of volume and centroid changes under dw;,
and dw,, have to take into account the cylindrical shape of the pattern manifold, while changes under dws, have to take into account
an essentially boxlike geometry. This leads to the different prefactors in Eq. (B7).

For 0,,,0,,>>1 we can either neglect the expressions
containing the exponentials or expand the sin and cos
terms in the prefactors to leading order. If we further
neglect O(k?) terms relative to O(o%; 4,k*) we end up
with the simplified expressions given in Egs. (21) and (23).

2. Derivation of an expression for Q
The matrix elements of D are given by
=(Bwy,, Awg, )
=3 h(p,s)h(q,s)
s

D

pmaqn

X[(wgm_ﬁsm )(wgm “Ugm )Fs+an] , (B9)
where the matrix elements M,,, are given by
M,, = fﬁ( VU — Vg Den JP(V)AV . (B10)

Due to the translational invariance of the stationary state
the quantities M,,, are independent of the location s in
the network layer. Fourier transformation of (B9) gives

ﬁm,,(k)=;—23{[Vkﬁ(k)]m[Vkﬁ(k)]f—l—[ﬁ(k)]sz,,} ,

(B11)

where /i (k) again denotes the Fourier transform (BS) of
the neighborhood function (6). Straightforward integra-
tion of (B10) yields M,,,, =0, YVm+n and

1 1 qg ﬁatN > q f)atN g Zf,atN 2
127127 44?2 ° 4d* ’ 342
Inserting (B12) into (B11)

Mmmﬂ > , (B12)

for the diagonal elements.

leads to the simplified expressions given in Egs. (22) and
(24).

APPENDIX C: CALCULATION
OF CORRELATION FUNCTIONS

For isotropic neighborhood functions (o,;=0,,) the
appropriately normalized power spectrum of us,, uy,
and u 5. has the form

2
exp —%—kz

(%k))=a
o’ .2 272
exp |~ k°|—q°k

where the constants g and a are proportional to the order
parameter and where we have suppressed the component
index i for simplicity. The spatial autocorrelation func-
tions are given by the Fourier transform of (C1):

=1 r= i 52 2
Sp)=-_— [ " explikp)(@ *(k))d’k

2
k exp —Z g2

(C2)

=a [ “Jo(klpD) dk

exp —q’k?

g
k2
4

where J|, is the zeroth-order Bessel function. In the gen-
eral case (C2) has to be integrated numerically. Analytic
expressions can be obtained for the limit cases g —0,

_Ipl?

o | (C3)
g

S(p)—const Xexp
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and for ¢ —@pres = Ve g,

S(p)—constX (C4)

‘/qthres - q

For large p the Bessel function is approximated by
172
2|pl

o

_o_
7|pl

~
=~

. (CS)

cos ALPLI —7/4

Jo

Thus, at the critical value of g, spatial correlations decay
with 1/Vp.

[1] D. H. Hubel and T. N. Wiesel, J. Comp. Neurol. 158, 267
(1974).

[2] D. H. Hubel and M. S. Livingstone, J. Neurosci. 4, 309
(1984).

[3] G. G. Blasdel and G. Salama, Nature 321, 579 (1986).

[4] T. Bonhoeffer and A. Grinvald, Nature 353, 429 (1991).

[5] G. G. Blasdel, J. Neurosci. (to be published).

[6] G. G. Blasdel, J. Neurosci. (to be published).

[7] A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T.
N. Wiesel, Nature 324, 361 (1986).

[8] K. D. Miller, in Neuroscience and Connectionist Theory,
edited by M. A. Gluck and D. E. Rumelhart (Lawrence
Erlbaum Associates, Hillsdale, NJ, 1990), pp. 267-353.

[9] C. J. Shatz, Neuron. 5, 745 (1990).

[10] C. von der Malsburg, Kybernetik 14, 85 (1973).

[11] D. J. Willshaw and C. von de Malsburg, Proc. R. Soc.
London Ser. B 194, 431 (1976).

[12] A. Takeuchi and S. Amari, Biol. Cybern. 35, 63 (1979).

[13] T. Kohonen, Biol. Cybern. 43, 59 (1982).

[14] T. Kohonen, Biol. Cybern. 44, 135 (1982).

[15] R. Linsker, Proc. Natl. Acad. Sci. U.S.A. 83, 8779 (1986).

[16] R. Soodak, Proc. Natl. Acad. Sci. U.S.A. 84, 3936 (1987).

[17] D. M. Kammen and A. L. Yuille, Biol. Cybern. 59, 23
(1988).

[18] K. D. Miller, J. B. Keller, and M. P. Stryker, Science 245,
605 (1989).

[19] K. D. Miller, Neuroreport 3, 73 (1992).

[20] A. S. Rojer and E. L. Schwarz, Biol. Cybern. 62, 381

(1990).

[21] R. Durbin and G. Mitchison, Nature 343, 644 (1990).

[22] K. Obermayer, H. Ritter, and K. Schulten, Proc. Natl.
Acad. Sci. U.S.A. 87, 8345 (1990).

[23] S. Tanaka, Neur. Network 3, 625 (1990).

[24] S. Tanaka, Biol. Cybern. 64, 263 (1991).

[25] T. Kohonen, Self-Organization and Associative Memory
(Springer- Verlag, New York, 1987).

[26] H. Ritter and K. Schulten, Biol. Cybern. 60, 59 (1988).

[27] H. Ritter, K. Obermayer, K. Schulten, and J. Rubner, in
Physics of Neural Networks, edited by E. Domani, J. L.
van Hemmen, and K. Schulten (Springer-Verlag, New
York, 1991), pp. 281-306.

[28] N. V. Swindale, Proc. R. Soc. London Ser. B 215, 211
(1982).

[29] T. Kohonen, Proc. IEEE 78, 1464 (1990).

[30] R. Miikkulainen, in Artificial Neural Networks I, edited by
T. Kohonen, K. Maikisara, O. Simula, and J. Kangas
(North-Holland, Amsterdam, 1991), pp. 415-420.

[31] E. Erwin, K. Obermayer, and K. Schulten, Biol. Cybern.
(to be published).

[32] E. Erwin, K. Obermayer, and K. Schulten, Biol. Cybern.
(to be published).

[33] N. V. Swindale, J. A. Matsubara, and M. S. Cynader, J.
Neurosci. 7, 1414 (1987).

[34] W. T. Baxter and B. M. Dow, Biol. Cybern. 61, 171 (1989).

[35] 3. S. Lund and S. Yoshioka, J. Comp. Neurol. (to be pub-
lished).



FIG. 1. Spatial pattern of (a) orientation selectivity and (b)
ocular dominance in the striate cortex of an adult monkey (Ma-
caca nemestrina). The images were obtained by optical imaging
[5,6] and show a 4 X 6 mm? patch of cortex which is located near
the border to area 18. Orientation preference is coded by color,
where the sequence red — yellow — green — blue — purple
— red describes a complete cycle of preferred orientation for 0°
over 90° to 180°. Orientation tuning strength is normalized and
coded by brightness, where bright areas indicate regions with a
specific response. Ocular dominance is also coded by bright-
ness, where black and white indicate preference for the con-
tralateral and the ipsilateral eye, respectively. The arrows in (a)
mark the two prominent elements of the orientation column sys-
tem, the singularities (arrow 1) and regions where orientation
preferences are organized in parallel slabs (arrow 2).



2%
‘0.0
S

Westety
“\\t:'O
et

¢

e
R

RS

WA

FIG. 10. Typical stationary state of the self-organizing feature maps generated for T’ 4 s > Ty, using an isotropic neighborhood
function. The figure displays a 110X 150 section of a network of size N=d =512. The parameters of the simulation are given in Fig.
8(a). (a) Spatial pattern of orientation preference ¢, (color) and orientation tuning strength g, (brightness) as a function of location r.
Arrows indicate singularities (arrow 1) and linear regions (arrow 2). (b) Spatial pattern of ocular dominance values z, (brightness) as
a function of location r. (c) Spatial structure of the topographic projection. The components of the feature vectors were coded as de-
scribed in Fig. 7.



FIG. 11. Correlation between the spatial pattern of orienta-
tion selectivity and ocular dominance. Color and brightness
code for orientation preference and orientation tuning strength,
respectively, the white lines indicate the borders of the ocular
dominance bands. (a) Experimental data (taken from [5,6]) ob-
tained from an adult macaque. The image shows a 4 X 6 mm?
patch of cortex, which is located near the border to area 18. (b)
Overlay of the orientation and ocular dominance patterns
shown in Fig. 10.
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FIG. 13. Number of map locations as a function of 5, and s, (see text). (a) Analysis of the stationary state of the SOFM algorithm
displayed in Fig. 10. The total number of map locations was 1500, o, /A;=0.2. (b) Analysis of experimental data (taken from [3,5,6])
obtained from four adult monkeys. The total number of map locations was 3500, g, /A,=0.2. o, was 150 um, the typical radius of
an interneuron dendritic tree located in the superficial layers of the monkey striate cortex [35].
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FIG. 12. Gabor transform of w,;, i >2 at a typical location in
the pattern described in Fig. 10 for o, =6. Black regions indi-
cate modes with high energy.



FIG. 15. Typical stationary state of the self-organizing feature maps generated for T’ 4 5 >> T, using an isotropic neighborhood
function. The figure displays a 192X 256 section of a network of size N=d =256. The parameters of the simulation were £¢=0.1,
T, 4=1280, and T's=1478. The patterns were obtained after 60 000 iterations starting from random initial conditions. o, was linear-
ly decreased during the simulation from o,(0)=200 to ¢,(30000)=20 and then to o,(60000)=4. For this set of parameters the
critical value of the order parameters, which depends on o, lies between 663.0 and 3.3. (a) Spatial pattern of orientation preference
¢, (color) and orientation tuning strength g, (brightness) as a function of location r. (b) Spatial pattern of ocular dominance values z,
(brightness) as a function of location r. (c) Spatial structure of the topographic projection. The components of the feature vectors
were coded as described in Fig. 7.
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FIG. 16. Change of shape of the tesselation cells corresponding to the stationary state (18) under an infinitesimal shift ow, of the
weight vector w,. (a) Shift parallel to the coordinates v, and v,. The drawing shows a projection of the tesselation onto the v,,v,
plane, where the positions of the weight vectors before and after the shift are indicated by black and white dots, respectively. The
dotted areas indicate volume changes linear in dw,; they contribute to Egs. (B6) and (B7). The hatched areas give an upper bound of
corrections of O(|dw,|?) to these volume changes; they are added to or subtracted from the dotted areas to keep expressions (B6) and
(B7) simple. (b) Shift parallel to the coordinates v; to vs. The drawing shows a projection of the tesselation onto the v,,v; plane
where i € {3,4,5]. The two horizontal lines indicate the borders of the pattern manifold. Hatched and dotted areas again indicate
volume changes of first and higher order in dw,, respectively. Note, that a calculation of volume and centroid changes under dw,,
and dwy, have to take into account the cylindrical shape of the pattern manifold, while changes under dws, have to take into account
an essentially boxlike geometry. This leads to the different prefactors in Eq. (B7).
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FIG. 3. The neural network model.



FIG. 4. A typical solution of the map problem (Fig. 2) found
by the SOFM algorithm. The locations of the pattern vectors
which are mapped to the units in the network are indicated by
the intersections of a grid in feature space. Only every fourth
vector is presented. The data was taken from a small region of
the map shown in Fig. 10.
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FIG. 7. Snapshot of fluctuations around the stationary state (18). The figure displays an 80X 100 section of a network of size
N=d=512. The parameters of the simulation were e=0.1, o), =5, T , s =1.24. For this set of parameters the critical value of the
order parameters is Ty, =4.12. The snapshot was obtained after 60 000 iterations from the “topographic” initial state (18). (a) Spa-
tial pattern of orientation preference ¢, (color) and orientation tuning strength g, (brightness) as a function of location r. (b) Spatial
pattern of ocular dominance values z, (brightness) as a function of location r. Orientation preference, orientation tuning strength,
and ocular dominance values were color coded as described in Fig. 1. (c) Spatial structure of the topographic projection. The figure
displays the locations (x,;,x,,) of receptive field centers in visual space for all units in the network layer. Receptive field centers of
neighboring cells were connected by lines.
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FIG. 8. Complex Fourier transforms ¥ exp(ikr)g.(cos¢,+i sing,) of the spatial pattern of orientation preference and correspond-
ing power spectra. (a) Fourier transform of the pattern of orientation of a typical stationary state of the SOFM algorithm generated
for T 45> Ty using an isotropic neighborhood function. Parameters of the simulation were N=d =512, €¢=0.02, 0,=3,
T;,,=10.24, and T5=8.87. For this set of parameters the critical value of the order parameters is T, =4.12. The figure was ob-
tained after 9 X 10 iterations from the “topographic” initial state (18). (b) Fourier transform of the pattern of orientation selectivity
for a typical stationary state of the SOFM algorithm generated for T'; 4 5 > Typres Using an anisotropic neighborhood function. The
parameters of the simulation were N=d =512, £=0.02, 0}, =5, 043=17.5, T3 4=10.24, and T'5=8.87; the critical value of the order
parameters is Ty =4.12. The figure was obtained after 9X 107 iterations from the “topographic” initial state (18). (c) Fourier
transform of the pattern of orientation selectivity obtained from a 6X 8 mm? patch of macaque striate cortex. (d) Power spectrum of
(a) and (c) obtained by averaging over all directions of the k vector. Mean peak amplitude and peak frequency were normalized to 1.
Unit frequency corresponds to 1.38/mm for the experimental data.



