
5 Gene regulation fun
tionsRegulation of gene expression is one of the main 
ontrol me
hanisms in 
ells. Bio
hemi
ally, mRNA trans
rip-tion is 
ontrolled by regulatory proteins (e.g. σ fa
tors and trans
ription fa
tors), whi
h bind to regulatorysites on the DNA and modulate the promoter a
tivities of genes or operons.To obtain dynami
 models of gene networks, the simple qualitative arrows need to be repla
ed by quantitativegene regulation fun
tions, the rate laws of trans
ription. Gene regulation fun
tions have been determineda

urately for individual promoters(e.g. for the La
 operon in E. 
oli) by �tting predi
ted mathemati
alfun
tions to measured trans
ription data. Based on high-throughput expression data, simple gene regulationfun
tions and regulator a
tivities 
an be estimated even for larger trans
ription networks.5.1 Equilibrium binding of trans
ription fa
tors5.1.1 Trans
ription fa
tor binding to promotorIn boolean models, gene regulation is des
ribed as an all-or-none de
ision. In kineti
 models, it is des
ribedby 
ontinuuous fun
tions that arise from a model of trans
ription fa
tor (TF) binding (all-or-none on themi
ros
opi
 level.) In the following, we assume (i) a binding equilibrium for trans
ription fa
tors and (ii) a
ertain average trans
ription rate in ea
h binding state.
Figure 1: Example of trans
ription fa
tor binding to a promotorWe treat the following example (see Fig.1): T is an a
tive, free trans
ription fa
tor, D is the DNA bindingsite and C is the 
omplex, whi
h a

ures when T and D bound together. T + D ⇐⇒ C, with Dt = D + C(1 DNA mole
ule per 
ell  * 1µm3 in e.
oli) → C = Dt − DThe rate equation for the 
on
entrations are:

dC

dt
= k+ ∗ T ∗ D − k−C (1)Chemi
al eqilibrium:

C =
T ∗ D

k−/k+
, (2)with k−

k+
= KD =disso
iation 
onstant.The greater the value of kD, the more easily the 
omplex will disso
iate be
ause the binding energy is lower.Thus, the binding energy determines kD. We equal the equations for C and get:

D =
Dt

1 + T/kD
(3)and further:

C =
DtT

kD + T
. (4)1



Figure 2: Con
entration of DNA-binding sites (top) and the 
on
entration of 
omplexes (bottom) plottedagainst the 
on
entration of a
tive trans
ription fa
tor T mole
ules.At the 
on
entration x = kD, exa
tly half of the binding sites are empty (see Fig.2). For x → ∞, C → Dtot.We get the probability of a single free binding site with the equation: p = 1
1+T/kD5.1.2 The trans
ription rate for a repressor geneIf no repressor is bound, Pol II binds and the trans
ription starts. The maximum trans
ription rate βdepends on the promotor quality and 
an be 
hanged with single-point mutations.If we assume 
onstant trans
ription for the empty promoter and no trans
ription at all for the represser-bound promoter, the promoter a
tivity (=trans
ription rate) with repressor is given by Y = β

1+R∗/kD
, where

R∗ is the a
tivated repressor.5.1.3 Cooperative bindingA trans
ription fa
tor (TF) 
an be a dimer, tetramer, et 
etera 
ontaining various identi
al subunits with nbinding sites. Now we are only interested in o

upied trans
ription fa
tors be
ause the 
ooperative bindinghas to be examined. Consider the rea
tion of an unbound to a bound TF: n ∗ S + x ⇐⇒
−

x

• Bound TF: −

x= xtS
n

kx
n+Sn

• Free TF: x = xt

1+Sn/Kx
nWe obtain a step-funtion with a step at kx for n → ∞ (see Fig. 3).
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Figure 3: Relation between the number of indu
er mole
ules S and bound TF x5.2 Gene regulation fun
tions derived from equilibrium binding: the general
aseA kineti
 law is used for the trans
ription rates to des
ribe gene expression. The rate y is then given by agene regulation fun
tion
y(t) = f(x(t),p). (5)

y is the trans
ription rate of a gene. It depends on regulator a
tivities xl. The parameter ve
tor p and themathemati
al form of f are spe
i�
 for ea
h gene (however, di�erent genes may be modeled with the samefun
tional form). The ve
tor x 
ontains the a
tivities of all regulators for the gene. In eukaryotes, promoters
an pro
ess a large number of inputs. They have 
ompli
ated input fun
tions. A gene input fun
tion
fi des
ribes mi
ros
opi
 pro
esses like binding of regulators. It is determined by the nu
leotide sequen
e ofthe promoter region. Fig. 4 shows di�erent binding states of the La
 promoter in a simpli�ed s
heme with�ve states. Figure (5) shows the relationship between promoter sequen
e and gene input fun
tion: a gene

RNA polymerase

Activator CRP

Repressor LacIFigure 4: Mi
ros
opi
 states of the La
 promoter (s
hemati
 model). Bound a
tivator in
reases the prob-ability of polymerase binding (right). Trans
ription 
an o

ur in states with bound polymerase (bottom).The promoter 
an be bound by RNA polymerase and the a
tivator CRP. The bound repressor La
I inhibitsthe binding of other mole
ules (left).promoter 
an assume various mi
ros
opi
 states, 
hara
terized by di�erent regulators bound to its bindingsites and by di�erent 
onformations of the DNA. Two basi
 assumptions For a quantitative model:
• There is a thermodynami
 equilibrium between the di�erent states. The probability for ea
h statedepends on its binding energy and the regulator mole
ules availability.
• The trans
ription initiation o

urs randomly at a 
ertain rate in ea
h state.Ea
h 
onformation state of the gene input fun
tion fi is 
hara
terized by a free energy F = E − TS where

E and S denote the energy and the entropy of the state and T is the temperature. On the one hand, thefree energy F 
aptures energies related to regulator binding or bending in DNA loops and these energiesdepend on presen
e and sequen
es of regulator binding sites (of the promotor sequen
e). On the other hand,the entropy term depends on the number of free regulator mole
ules. The free energy F of a promoter3
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Figure 5: S
hemati
 relation between nu
leotide sequen
e and trans
ription rates. There is shown thetrans
ription fun
tion of a single trans
ription fa
tor (= a
tivator), (bottom, right). The fun
tion of aninhibitor is reversed.state determines its statisti
al weight wi = exp(−Fi/(kBT )) in the Boltzmann distribution, and the totaltrans
ription rate:
y =

∑

i wi vi
∑

i wi
(6)is 
omputed as the weighted average over the synthesis rates in the di�erent states.We obtain an expression for the gene regulation fun
tion, if we write the trans
ription rate as a fun
tion ofregulator 
on
entrations .5.3 The La
 operon in Es
heri
hia 
oliMetabolites 
an 
ontrol the enzymes that 
atalyze their own produ
tion or 
onsumption. With the resultingfeedba
k loop the protein levels 
an be 
onstantly adapted to the 
urrent needs of the 
ell. Es
heri
hia 
oliba
teria prefer glu
ose as their energy sour
e. For this reason, they sustain enzymes for glu
ose metabolismunder all 
onditions. Ba
teria 
an utilize other sugars su
h as la
tose ex
ept of glu
ose. The enzymes

β-gala
tosidase, permease, and thiogala
toside transa
etylase (they are important for the 
onsumption ofla
tose) are 
oded and regulated together in trans
ription unit La
 operon.When 
ells are shifted from a glu
ose-ri
h medium to a glu
ose-free, but la
tose-ri
h medium, they need anadaption time before they 
an assimilate la
tose (at a high rate). The expression level of the La
 operonis in
reased when glu
ose is missing and la
tose is present. A strong La
 expression follows the logi
al rule`low glu
ose AND high la
tose' (in approximation).The trans
ription rate is 
ontrolled by 
ombining two (bio
hemi
al) signals (Figure 6 (a)). On the one hand,a high glu
ose level de
reases [
AMP℄, an intra
ellular messenger that a
tivates the trans
riptional a
tivatorCRP. (That is why at high glu
ose levels, CRP remains ina
tive, and La
 trans
ription is low.) La
tose, onthe other hand, is sensed via allola
tose, an isomer formed by 
onverting the 1-4 bond of la
tose into a 1-6bond. Allola
tose a
tivates the trans
riptional repressor La
I, whi
h shuts down La
 expression by blo
kingthe binding of polymerase and by promoting a DNA loop. If no la
tose is present, La
 expression will alsobe low.The La
 operon be
omes a strong expression, if the repression is released and the a
tivator CRP is bound,(happening when Glu
ose is absent but La
tose is available). Experiments have shown, CRP and La
I (the4



regulators) 
an be 
ontrolled by the extra
ellular levels of 
AMP and IPTG, (a substitute for allola
tose)shown in Figure 6 (b).
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−Figure 6: Regulation of the La
 operon. (a) The La
 operon is 
ontrolled by the trans
riptional regulatorsCRP and La
I, whi
h respond to extra
ellular levels of la
tose and glu
ose. High expression of the La
operon requires that la
tose is present and glu
ose is absent. (b) In an experiment, the a
tivities of CRPand La
I are regulated by extra
ellular levels of the ligands 
AMP and IPTG. E�e
tively, both substan
esa
tivate La
 expression.5.4 Gene regulation fun
tion of the La
 operon(a) (b) (
)
Figure 7: Gene regulation fun
tions of the wild type La
 operon and two variants: (a) Gene input fun
tionin an E. 
oli wild-type strain. (b) An OR-like input fun
tion. (
) An AND-like input fun
tion.Does the gene regulation fun
tion in living 
ells follow the above predi
tion? Setty et al. have experi-mentally determined the input fun
tion of the La
 operon in living E. 
oli 
ells. The trans
ription rateswere measured by GFP under the 
ontrol of the La
 promoter. The regulator a
tivities were regulated viaextra
ellular levels of 
AMP and IPTG. The trans
ription rate is plotted against logarithmi
 
on
entrationsof extra
ellular 
AMP and IPTG. It shows four plateaus 
orresponding to the possible 
ombinations of lowand high 
on
entrations (Fig. 7 (a)). At high 
AMP and IPTG levels the trans
ription rate is high, too.In 
ontrast to the boolean input fun
tion, the expression rates for low 
AMP and low IPTG are not exa
tlyzero and this baseline a
tivity has an important biologi
al fun
tion:in order to swit
h the La
 system to a high expression level, some la
tose has to be imported into the 
ellto produ
e the messenger allola
tose.( This requires that the la
tose transporter La
Y is already present, atleast at a low level.)If the levels of 
AMP and IPTG are used as proxies for trans
riptional a
tiviators (inhibition of the repressorLa
I e�e
tively 
ounts as a
tivation), the simpli�ed mi
ros
opi
 model in Figure (4) leads to a gene regulationfun
tion shown in Figure 7 (a)). 5



The binding energy is determined by the sequen
e of polymerase trans
ription fa
tors an binding sites.Mutations in regulator binding sites will 
hange the binding energies and thereby all the other parameters
⇒ Change the shape of the input fun
tion (= the adaption of the input fun
tion to new 
onditions)Changes of the sequen
es of polymerase and trans
ription fa
tor have a global impa
t, but 
hanges of thepromotor area only have lokal impa
t. For this reason, they are easier 
hanged.Point mutations (in promoter sequen
e of the La
 operon) lead to variants of the gene regulation fun
tions(
ompare with Figure 7). The plasti
ity of gene input fun
tions allows for evolutionary �ne-tuning of thegene regulatory system. In the 
ase of the La
 operon, a pure AND-like input fun
tion (Fig. 7) 
ould haveevolved rather easily.5.5 Trans
riptional regulation in larger networksIf the regulator a
tivities x(t) and the trans
ription rate y(t) for a gene regulation fun
tion (5) have beenmeasured, the parameters p 
an be obtained from nonlinear regression. However, it is di�
ult to 
ontrolor measure the a
tive form of trans
ription fa
tors. In the La
 operon study, for instan
e, external levelsof IPTG and 
AMP had to be used as 
ontrollable proxies. An alternative (if the regulator a
tivities are
ompletely unknown)is to 
ompare the levels of di�erent target genes and to estimate the regulator a
itivitiesalong with the gene input fun
tions.Mi
roarrays allow to measure the mRNA levels of thousands of genes at the same time. The expressionlevels of a single gene, measured in di�erent 
ell samples, form an expression pro�le. Su
h data 
ontain:(i)valuable information about the regulators of a gene, (ii) their a
tivities, and (iii) the 
orresponding generegulation fun
tions.Data-driven methods like 
lustering or bi
lustering 
ompute similarity measures between the expressionpro�les of di�erent genes, assess their statisti
al signi�
an
e, and hypothesize that genes with signi�
ant
oexpression may be 
oregulated. Even if genes respond to the same regulators, their expression pro�lesmay di�er due to (i) di�erent gene input fun
tions ; (ii) additional trans
ription fa
tors that 
ontrol onlysome of the genes; (iii) di�erent rates of mRNA degradation.Dynami
al models of gene expression 
an a

ount for these e�e
ts and help to infer 
o-regulation morereliably than by using simple similarity s
ores. Most genes respond to several trans
ription fa
tors, andtrans
ription fa
tors 
an regulate large numbers of target genes.To determine the gene regulation fun
tions from expression data, the e�e
ts of di�erent trans
ription fa
torshave to be disentangled. One su
h method is network 
omponent analysis, whi
h uses simple linear generegulation fun
tions and 
an thereby ta
kle fairly large networks.5.6 Network 
omponent analysisNetwork 
omponent analysis (NCA) is a method to translate a known geneti
 network stru
ture into aquantitative model of gene regulation. While the trans
ription rates and the trans
ription fa
tors are known,the gene regulation fun
tions need to be 
omputed. In NCA, we assume linear gene regulation fun
tions, sothe temporal a
tivity yi(t) of a promoter is a weighted sum of the regulator a
tivities xl(t)

yi(t) =
∑

l

ail xl(t). (7)The index t refers to di�erent samples and 
an represent time points in an experiment. The input weights
ail indi
ate whether a regulator a
ts as an a
tivator (ail > 0), or as a repressor (ail < 0), or has no e�e
t(ail = 0) on the promoter a
tivity.Network stru
tures 
an be obtained from databases or from experiments. By these stru
tures, many of the
oe�
ients ail are already limited to zero values. Known modes of regulation (a
tivation/repression) maylimit the signs of the remaining elements ail. 6



The linear NCA model 7 resembles the statisti
al model used in prin
ipal 
omponent analysis. But in
ontrast, it is based on biologi
al knowledge about the stru
ture of the geneti
 network. To estimate themodel parameters, we rewrite equation (7) as a matrix produ
tY = A X. (8)(see Fig. 8)The matrix A 
ontains the linear 
oe�
ients of input fun
tions (rows: promoters, 
olumns: regulators) andX 
ontains the pro�les of the regulators (rows: trans
ription fa
tors, 
olumns: time points or 
onditions).The stru
ture of A (positions and possibly signs of non-zero entries) is pres
ribed by the network stru
ture,and only the numeri
al values (the in�uen
e strengths) need to be determined from data.The aim of NCA is to estimate the regulator a
tivities xl(t) and the input weights ail from measuredexpression values yexp
i (t). We require that Yexp

≈ A X. (9)with least square errors. Given a data matrix Y and the above-mentioned 
onstraints on A, the matri
es Aand X 
an be determined by an iterative optimization:1. A is initialized with random values and X is 
hosen by least squares estimation.2. X is kept �xed and A is updated3. The mutual updating is iterated until 
onvergen
e.For ideal arti�
ial data (obtained from an NCA model without noise), this biquadrati
 optimization 
onvergesto a global optimum for both matri
es A and X.If this optimum is non-unique, (depending on the network topology) NCA models may be unidenti�able(be
ause di�erent parameter 
hoi
es 
ould lead to equally good results). Identi�ability of the NCA modeldepends on the network stru
ture. It 
an be 
he
ked by analyzing the wiring between regulators and theirtarget genes.The linear NCA model 
an also be interpreted in terms of nonlinear gene regulation fun
tions: if the inputs
xl and outputs yl represent logarithmi
 regulator a
tivities xl = ln cl and logarithmi
 promoter a
tivities
yl = ln vl, Eq. (7) is equivalent to a nonlinear gene regulation fun
tion of the form

vi(t) =
∏

l

(cl(t))
ail (10)for the original values cl and vi. This form a

ounts for multipli
ative e�e
ts between regulators ( but notfor saturation).Example: Assumption for the input fun
tion: −

Xi(t)=
−

Xi(o) ∗
∏

(
−

bj(t)

−

bj(0)

)aij

, with
a > 0 → a
tivation
a = 0 → no e�e
t
a < 0 → inhibition.Consider the logarithms: x = log

−

X(t)

−

X(o)

and b = log

−

b(t)
−

b(0)

⇒ Xi(t) =
∑

j aijbj(t).Look at �gure (8): The stru
ture of matrix A is determined by the geneti
 network and the logarithmi
7



Figure 8: The matrix produ
t usued in network 
omponent analysis.data X 
omply the equation.A Partition of this would be: X = A ∗B = AS
︸︷︷︸A′

S−1B
︸ ︷︷ ︸B′

(− >S is the diagonal matrix)Furthermore, the question arises: Is this partition unique or are there other partitions that ful�ll the samestru
tural 
ondition?Liao et al. developed in 2003 a 
riterion for the NCA, whi
h says the partition is expli
it, if:1. A has full 
olumn rank.2. A keeps its full 
olumn rank, although a freely 
hosen TF (and all of its target genes) is deleted.3. B has full row rank.All of these 
onditions have to be ful�lled by the matri
es. To 
he
k, if everything is ful�lled, one 
an userandom numbers and test.

Figure 9: This is an example: the target genes of TF1 are target genes of TF2, too. In this 
ase, the matrixhas no full 
olumn rank and two 
olumns are linearly dependent. For this reason, the se
ond 
ondition ofthe 
riterion of Liao et al. is not satis�ed. The third 
ondition requires that there have to be more points oftime than TFs.Figure (9) displays an example that does not satisfy the 
riteria.
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