5 Gene regulation functions

Regulation of gene expression is one of the main control mechanisms in cells. Biochemically, mRNA transcrip-
tion is controlled by regulatory proteins (e.g. o factors and transcription factors), which bind to regulatory
sites on the DNA and modulate the promoter activities of genes or operons.

To obtain dynamic models of gene networks, the simple qualitative arrows need to be replaced by quantitative
gene regulation functions, the rate laws of transcription. Gene regulation functions have been determined
accurately for individual promoters(e.g. for the Lac operon in E. coli) by fitting predicted mathematical
functions to measured transcription data. Based on high-throughput expression data, simple gene regulation
functions and regulator activities can be estimated even for larger transcription networks.

5.1 Equilibrium binding of transcription factors

5.1.1 Transcription factor binding to promotor

In boolean models, gene regulation is described as an all-or-none decision. In kinetic models, it is described
by continuuous functions that arise from a model of transcription factor (TF) binding (all-or-none on the

microscopic level.) In the following, we assume (i) a binding equilibrium for transcription factors and (ii) a
certain average transcription rate in each binding state.
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Figure 1: Example of transcription factor binding to a promotor

We treat the following example (see Fig.1): T is an active, free transcription factor, D is the DNA binding
site and C is the complex, which accures when T and D bound together. T'+ D <= C, with D, = D + C
(1 DNA molecule per cell ~* 1um? in e.coli) — C = D; — D

The rate equation for the concentrations are:

%:l@r*T*D*k,C’ (1)

Chemical eqilibrium:
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with Z—; = Kp =dissociation constant.

The greater the value of kp, the more easily the complex will dissociate because the binding energy is lower.
Thus, the binding energy determines kp. We equal the equations for C and get:
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Figure 2: Concentration of DNA-binding sites (top) and the concentration of complexes (bottom) plotted
against the concentration of active transcription factor 7' molecules.

At the concentration x = kp, exactly half of the binding sites are empty (see Fig.2). For x — 0o, C' — Dyy.
We get the probability of a single free binding site with the equation: p = m

5.1.2 The transcription rate for a repressor gene

If no repressor is bound, Pol II binds and the transcription starts. The maximum transcription rate
depends on the promotor quality and can be changed with single-point mutations.

If we assume constant transcription for the empty promoter and no transcription at all for the represser-
bound promoter, the promoter activity (—transcription rate) with repressor is given by Y = ﬁ, where

R* is the activated repressor.

5.1.3 Cooperative binding

A transcription factor (TF) can be a dimer, tetramer, et cetera containing various identical subunits with n
binding sites. Now we are only interested in occupied transcription factors because the cooperative binding

has to be examined. Consider the reaction of an unbound to a bound TF: n % S + & <=
RS S
[ Free TF xr = HSSW

We obtain a step-funtion with a step at k, for n — oo (see Fig. 3).



Figure 3: Relation between the number of inducer molecules S and bound TF x

5.2 Gene regulation functions derived from equilibrium binding: the general
case

A kinetic law is used for the transcription rates to describe gene expression. The rate y is then given by a
gene regulation function

y(t) = f(=(t), p). (5)

y is the transcription rate of a gene. It depends on regulator activities ;. The parameter vector p and the
mathematical form of f are specific for each gene (however, different genes may be modeled with the same
functional form). The vector & contains the activities of all regulators for the gene. In eukaryotes, promoters
can process a large number of inputs. They have complicated input functions. A gene input function
fi describes microscopic processes like binding of regulators. It is determined by the nucleotide sequence of
the promoter region. Fig. 4 shows different binding states of the Lac promoter in a simplified scheme with
five states. Figure (5) shows the relationship between promoter sequence and gene input function: a gene
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Figure 4: Microscopic states of the Lac promoter (schematic model). Bound activator increases the prob-
ability of polymerase binding (right). Transcription can occur in states with bound polymerase (bottom).
The promoter can be bound by RNA polymerase and the activator CRP. The bound repressor Lacl inhibits
the binding of other molecules (left).

promoter can assume various microscopic states, characterized by different regulators bound to its binding
sites and by different conformations of the DNA. Two basic assumptions For a quantitative model:

e There is a thermodynamic equilibrium between the different states. The probability for each state
depends on its binding energy and the regulator molecules availability.

e The transcription initiation occurs randomly at a certain rate in each state.

Each conformation state of the gene input function f; is characterized by a free energy F' = FE — T'S where
E and S denote the energy and the entropy of the state and 7' is the temperature. On the one hand, the
free energy F captures energies related to regulator binding or bending in DNA loops and these energies
depend on presence and sequences of regulator binding sites (of the promotor sequence). On the other hand,
the entropy term depends on the number of free regulator molecules. The free energy F of a promoter
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Figure 5: Schematic relation between nucleotide sequence and transcription rates. There is shown the
transcription function of a single transcription factor (= activator), (bottom, right). The function of an
inhibitor is reversed.

Transcription rate
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state determines its statistical weight w; = exp(—F;/(kgT)) in the Boltzmann distribution, and the total
transcription rate:

y - R ©)

is computed as the weighted average over the synthesis rates in the different states.

We obtain an expression for the gene regulation function, if we write the transcription rate as a function of
regulator concentrations .

5.3 The Lac operon in Escherichia col:

Metabolites can control the enzymes that catalyze their own production or consumption. With the resulting
feedback loop the protein levels can be constantly adapted to the current needs of the cell. Escherichia coli
bacteria prefer glucose as their energy source. For this reason, they sustain enzymes for glucose metabolism
under all conditions. Bacteria can utilize other sugars such as lactose except of glucose. The enzymes
(B-galactosidase, permease, and thiogalactoside transacetylase (they are important for the consumption of
lactose) are coded and regulated together in transcription unit Lac operon.

When cells are shifted from a glucose-rich medium to a glucose-free, but lactose-rich medium, they need an
adaption time before they can assimilate lactose (at a high rate). The expression level of the Lac operon
is increased when glucose is missing and lactose is present. A strong Lac expression follows the logical rule
‘low glucose AND high lactose’ (in approximation).

The transcription rate is controlled by combining two (biochemical) signals (Figure 6 (a)). On the one hand,
a high glucose level decreases [cAMP], an intracellular messenger that activates the transcriptional activator
CRP. (That is why at high glucose levels, CRP remains inactive, and Lac transcription is low.) Lactose, on
the other hand, is sensed via allolactose, an isomer formed by converting the 1-4 bond of lactose into a 1-6
bond. Allolactose activates the transcriptional repressor Lacl, which shuts down Lac expression by blocking
the binding of polymerase and by promoting a DNA loop. If no lactose is present, Lac expression will also
be low.

The Lac operon becomes a strong expression, if the repression is released and the activator CRP is bound,
(happening when Glucose is absent but Lactose is available). Experiments have shown, CRP and LacI (the



regulators) can be controlled by the extracellular levels of cAMP and IPTG, (a substitute for allolactose)
shown in Figure 6 (b).
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Figure 6: Regulation of the Lac operon. (a) The Lac operon is controlled by the transcriptional regulators
CRP and Lacl, which respond to extracellular levels of lactose and glucose. High expression of the Lac
operon requires that lactose is present and glucose is absent. (b) In an experiment, the activities of CRP
and Lacl are regulated by extracellular levels of the ligands cAMP and IPTG. Effectively, both substances
activate Lac expression.

5.4 Gene regulation function of the Lac operon
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Figure 7: Gene regulation functions of the wild type Lac operon and two variants: (a) Gene input function
in an E. coli wild-type strain. (b) An OR-like input function. (¢) An AND-like input function.

Does the gene regulation function in living cells follow the above prediction? Setty et al. have experi-
mentally determined the input function of the Lac operon in living E. coli cells. The transcription rates
were measured by GFP under the control of the Lac promoter. The regulator activities were regulated via
extracellular levels of cAMP and IPTG. The transcription rate is plotted against logarithmic concentrations
of extracellular cAMP and IPTG. It shows four plateaus corresponding to the possible combinations of low
and high concentrations (Fig. 7 (a)). At high cAMP and IPTG levels the transcription rate is high, too.

In contrast to the boolean input function, the expression rates for low cAMP and low IPTG are not exactly
zero and this baseline activity has an important biological function:

in order to switch the Lac system to a high expression level, some lactose has to be imported into the cell
to produce the messenger allolactose.( This requires that the lactose transporter LacY is already present, at
least at a low level.)

If the levels of cAMP and IPTG are used as proxies for transcriptional activiators (inhibition of the repressor
Lacl effectively counts as activation), the simplified microscopic model in Figure (4) leads to a gene regulation
function shown in Figure 7 (a)).



The binding energy is determined by the sequence of polymerase transcription factors an binding sites.
Mutations in regulator binding sites will change the binding energies and thereby all the other parameters

= Change the shape of the input function (= the adaption of the input function to new conditions)

Changes of the sequences of polymerase and transcription factor have a global impact, but changes of the
promotor area only have lokal impact. For this reason, they are easier changed.

Point mutations (in promoter sequence of the Lac operon) lead to variants of the gene regulation functions
(compare with Figure 7). The plasticity of gene input functions allows for evolutionary fine-tuning of the
gene regulatory system. In the case of the Lac operon, a pure AND-like input function (Fig. 7) could have
evolved rather easily.

5.5 Transcriptional regulation in larger networks

If the regulator activities z(t) and the transcription rate y(t) for a gene regulation function (5) have been
measured, the parameters p can be obtained from nonlinear regression. However, it is difficult to control
or measure the active form of transcription factors. In the Lac operon study, for instance, external levels
of IPTG and cAMP had to be used as controllable proxies. An alternative (if the regulator activities are
completely unknown)is to compare the levels of different target genes and to estimate the regulator acitivities
along with the gene input functions.

Microarrays allow to measure the mRNA levels of thousands of genes at the same time. The expression
levels of a single gene, measured in different cell samples, form an expression profile. Such data contain:
(i)valuable information about the regulators of a gene, (ii) their activities, and (iii) the corresponding gene
regulation functions.

Data-driven methods like clustering or biclustering compute similarity measures between the expression
profiles of different genes, assess their statistical significance, and hypothesize that genes with significant
coexpression may be coregulated. Even if genes respond to the same regulators, their expression profiles
may differ due to (i) different gene input functions ; (ii) additional transcription factors that control only
some of the genes; (iii) different rates of mRNA degradation.

Dynamical models of gene expression can account for these effects and help to infer co-regulation more
reliably than by using simple similarity scores. Most genes respond to several transcription factors, and
transcription factors can regulate large numbers of target genes.

To determine the gene regulation functions from expression data, the effects of different transcription factors
have to be disentangled. One such method is network component analysis, which uses simple linear gene
regulation functions and can thereby tackle fairly large networks.

5.6 Network component analysis

Network component analysis (NCA) is a method to translate a known genetic network structure into a
quantitative model of gene regulation. While the transcription rates and the transcription factors are known,
the gene regulation functions need to be computed. In NCA, we assume linear gene regulation functions, so
the temporal activity y;(t) of a promoter is a weighted sum of the regulator activities x;(¢)

yit) =Y aa i(t). (7)
l

The index ¢ refers to different samples and can represent time points in an experiment. The input weights
a; indicate whether a regulator acts as an activator (a; > 0), or as a repressor (a; < 0), or has no effect
(aiz = 0) on the promoter activity.

Network structures can be obtained from databases or from experiments. By these structures, many of the
coefficients a;; are already limited to zero values. Known modes of regulation (activation/repression) may
limit the signs of the remaining elements a;;.



The linear NCA model 7 resembles the statistical model used in principal component analysis. But in
contrast, it is based on biological knowledge about the structure of the genetic network. To estimate the
model parameters, we rewrite equation (7) as a matrix product

Y=A4X (8)

(see Fig. 8)

The matrix A contains the linear coefficients of input functions (rows: promoters, columns: regulators) and
X contains the profiles of the regulators (rows: transcription factors, columns: time points or conditions).
The structure of A (positions and possibly signs of non-zero entries) is prescribed by the network structure,
and only the numerical values (the influence strengths) need to be determined from data.

The aim of NCA is to estimate the regulator activities x;(¢) and the input weights a; from measured

expression values y; " (t). We require that

Y ~ A X (9)

with least square errors. Given a data matrix Y and the above-mentioned constraints on A, the matrices A
and X can be determined by an iterative optimization:

1. A is initialized with random values and X is chosen by least squares estimation.
2. X is kept fixed and A is updated

3. The mutual updating is iterated until convergence.

For ideal artificial data (obtained from an NCA model without noise), this biquadratic optimization converges
to a global optimum for both matrices A and X.

If this optimum is non-unique, (depending on the network topology) NCA models may be unidentifiable
(because different parameter choices could lead to equally good results). Identifiability of the NCA model
depends on the network structure. It can be checked by analyzing the wiring between regulators and their
target genes.

The linear NCA model can also be interpreted in terms of nonlinear gene regulation functions: if the inputs
x; and outputs y; represent logarithmic regulator activities x; = In¢; and logarithmic promoter activities
yi = Invy, Eq. (7) is equivalent to a nonlinear gene regulation function of the form

vi(t) = [ J(a ()™ (10)
l

for the original values ¢; and v;. This form accounts for multiplicative effects between regulators ( but not
for saturation).
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Example: Assumption for the input function: X;q)=X;,) *[] (bj“) ) , with
bj(0)

a>0 — activation
a=0 — no effect
a <0 — inhibition.

Consider the logarithms: = = log 20 and b = log

X(o0) b(0)

bt)

= Xi) = 22 aijbje)-

Look at figure (8): The structure of matrix A is determined by the genetic network and the logarithmic
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Figure 8: The matrix product usued in network component analysis.

data X comply the equation.
A Partition of this would be: X = A+ B= ASS™'B (— >S is the diagonal matrix)
A~

A B
Furthermore, the question arises: Is this partition unique or are there other partitions that fulfill the same
structural condition?

Liao et al. developed in 2003 a criterion for the NCA, which says the partition is explicit, if:
1. A has full column rank.

2. A keeps its full column rank, although a freely chosen TF (and all of its target genes) is deleted.

3. B has full row rank.

All of these conditions have to be fulfilled by the matrices. To check, if everything is fulfilled, one can use
random numbers and test.

Figure 9: This is an example: the target genes of TF1 are target genes of TF2, too. In this case, the matrix
has no full column rank and two columns are linearly dependent. For this reason, the second condition of
the criterion of Liao et al. is not satisfied. The third condition requires that there have to be more points of
time than TFs.

Figure (9) displays an example that does not satisfy the criteria.



